Московский Государственный Университет имени М. В. Ломоносова

Факультет Вычислительной Математики и Кибернетики Кафедра Оптимального Управления

Оптимальное управление

(V семестр)

лектор — доцент М. В. Орлов составитель — В. С. Рябцев

Москва 2002

Содержание

1	Элементы выпуклого анализа	3
	Алгебраические операции в пространстве компактов	4
	Свойства алгебраических операций	5
	Метрика Хаусдорфа	6
	Теорема о существовании минимальной выпуклой оболочки множества	8
	Лемма о строгой отделимости	9
	Опорные функции	10
	Свойства опорных функций	11
	Построение минимальной выпуклой оболочки по опорной функции множества	16
2	Многозначные отображения	21
	Непрерывность многозначных отображений	21
	Лемма о необходимом и достаточном условии непрерывности многозначного	
	отображения	22
	Однозначные ветви многозначных функций	24
	Производная опорной функции	25
	Теорема о существовании однозначной измеримой ветви	
	Теорема Ляпунова	33
	Теорема о внесении знака опорной функции под знак интеграла	35
3	Принцип максимума Понтрягина	38
	Экспоненциал матрицы	38
	Абсолютно непрерывные функции	43
	Формула Коши	43
	Множество достижимости и его свойства	46
	Множество управляемости и его свойства	47

1 Элементы выпуклого анализа

Назовем множество $S_R(x_0) = \{x \in \mathbf{E}^n : ||x - x_0|| \leq R\}$ шаром радиуса R с центром в точке x_0 , а множество $S = \{x \in \mathbf{E}^n : ||x|| = 1\}$ сферой единичного радиуса. Введем ряд определений.

Определение 1. Множество A называется *открытым*, если

$$\forall x \in A \ \exists \varepsilon > 0 : \ S_{\varepsilon}(x) \in A.$$

Определение 2. Множество $A \subset \mathbf{E}^n$ называется *ограниченным*, если существует такое положительное R, что $A \subseteq S_R(0)$. При этом число

$$|A| = \sup_{a \in A} ||a||$$

называется *модулем* множества A.

Очевидно, $A \subseteq S_{|A|}(0)$ (если R конечное).

Определение 3. Точка $x \in \mathbf{E}^n$ называется *предельной точкой* множества A, если $\forall \varepsilon > 0$ $S_{\varepsilon}(x) \cap A \neq \varnothing$

Определение 4. Множество, содержащее все свои предельные точки, называется *замкнутым*.

Определение 5. Замкнутое ограниченное множество в \mathbf{E}^n называется *компактом*.

Примером компакта является *отрезок*, т.е. множество

$$[x,y] = \{z: z = \lambda x + (1-\lambda)y, \lambda \in [0,1]\}, x,y \in \mathbf{E}^n.$$

Или, что то же самое

$$\bigcup_{\lambda \in [0,1]} \{\lambda x + (1-\lambda)y\}.$$

Определение 6. Множество A называется *выпуклым*, если для любых x, y из этого множества выполняется $[x, y] \subseteq A$.

Множество всех компактных множеств (компактов) из \mathbf{E}^n обозначим $\Omega(\mathbf{E}^n)$. Через conv $\Omega(\mathbf{E}^n)$ обозначим множество всех выпуклых компактов в \mathbf{E}^n .

Определение 7. Выпуклое множество G называется выпуклой оболочкой множества $A \subset \mathbf{E}^n$, если $A \subseteq G$.

Определение 8. Выпуклое множество H называется минимальной выпуклой оболочкой множества A, если выполнены два условия:

- 1) $A \subseteq H$,
- 2) Для любой выпуклой оболочки G множества A выполняется $H \subseteq G$.

Минимальная выпуклая оболочка множества A обозначается как conv A. Легко видеть, что

$$\operatorname{conv} A = \bigcap_{A \subseteq P} P,$$

где P — выпуклые множества.

Алгебраические операции в пространстве компактов

Определение 9. Алгебраической суммой двух множеств $A, B \subset \mathbf{E}^n$ называется множество

$$A + B = C = \{c \in \mathbf{E}^n : c = a + b, a \in A, b \in B\} = \bigcup_{a \in A, b \in B} \{a + b\} = \bigcup_{a \in A} \{a + B\} = \bigcup_{b \in B} \{b + A\}.$$

Определение 10. Произведением множества A и числа $\lambda \in E$ называется множество

$$\lambda A = \{c \in \mathbf{E}^n: \ c = \lambda a, \ a \in A\}$$

Пример 1. Пусть имеется два множества:

$$A = \{a = (a_1, a_2) \in E^2 : a_2 = 0, |a_1| \le 1\};$$

 $B = \{a = (a_1, a_2) \in E^2 : a_1 = 0, a_2 \le 1\}.$

Построим их сумму.

Прежде чем перейти ко второму примеру, заметим, что для любого шара $S_R(a)$ справедливо представление $S_R(a) = a + R \cdot S_1(0)$.

Пример 2. Докажем равенство

$$S_{r_1}(a_1) + S_{r_2}(a_2) = S_{r_1+r_2}(a_1 + a_2).$$

Равенство двух множеств А и В эквивалентно выполнению двух условий:

$$\forall a \in A \Rightarrow a \in B \Rightarrow A \subseteq B$$
,

$$\forall b \in B \Rightarrow b \in A \Rightarrow B \subseteq A$$
.

Рассмотрим какой-либо элемент a из множества $S_{r_1}(a_1) + S_{r_2}(a_2)$, тогда

$$a = \bar{a_1} + \bar{a_2}, \ \bar{a_1} \in S_{r_1}(a_1), \ \bar{a_2} \in S_{r_2}(a_2),$$

следовательно,

$$a = a_1 + r_1 \xi + a_2 + r_2 \eta = (a_1 + a_2) + (r_1 \xi + r_2 \eta),$$

где $\xi \in S_1(0), \, \eta \in S_1(0)$. Из свойств нормы получаем:

$$||a - (a_1 + a_2)|| = ||r_1\xi + r_2\eta|| \le r_1||\xi|| + r_2||\eta|| \le r_1 + r_2;$$

следовательно $a \in S_{r_1+r_2}(a_1+a_2)$. Покажем теперь вложение в другую сторону. Пусть $a \in S_{r_1+r_2}(a_1+a_2)$, тогда

$$a = a_1 + a_2 + (r_1 + r_2)u = (a_1 + r_1u) + (a_2 + r_2u) = \bar{a_1} + \bar{a_2},$$

где $u \in S_1(0)$. Но $a_1 + r_1 u \in S_{r_1}(a_1), a_2 + r_2 u \in S_{r_2}(a_2)$. Отсюда получаем, что

$$a \in S_{r_1}(a_1) + S_{r_2}(a_2).$$

Свойства алгебраических операций

- 1) A + B = B + A коммутативность
- 2) (A + B) + C = A + (B + C) ассоциативность
- 3) $\lambda(A+B) = \lambda A + \lambda B$ дистрибутивность
- 4) $1 \cdot A = A$ единица по λ
- 5) Нет обратного элемента по операции сложения. Это означает, что нельзя получить линейное пространство. Проверим, например, выполняется ли тождество $A A = A + (-1) \cdot A = \{0\}$. Возьмём $A = S_1(0)$.

$$S_1(0) - S_1(0) = S_1(0) + (-1) \cdot S_1(0) = S_1(0) + S_1(0) = S_2(0),$$

т.е. тождество неверно.

6) Тождество $(\alpha + \beta)A = \alpha A + \beta B$ также неверно, однако выполняется вложение $(\alpha + \beta)A \subseteq \alpha A + \beta B$

Лемма 1. Пусть A - выпуклое множество, $\alpha, \beta \geqslant 0$. Тогда

$$(\alpha + \beta)A = \alpha A + \beta B.$$

Доказательство. Необходимость. $\forall b \in (\alpha + \beta)A \Rightarrow b = (\alpha + \beta)a$, где a — некоторый элемент из A, значит

$$b = \underset{\in \alpha A}{\alpha a} + \underset{\in \beta A}{\beta a} \in \alpha A + \beta B \Rightarrow (\alpha + \beta) A \subseteq \alpha A + \beta B.$$

Достаточность. $\forall b \in \alpha A + \beta B \Rightarrow \exists a_1 \in A, \ a_2 \in A : \ b = \alpha a_1 + \beta a_2$. Если $\alpha = \beta = 0$, то равенство тривиально. Пусть $\alpha > 0$. Тогда

$$b = \alpha a_1 + \beta a_2 = (\alpha + \beta) \left(\underbrace{\frac{\alpha}{\alpha + \beta}}_{\lambda_1} a_1 + \underbrace{\frac{\beta}{\alpha + \beta}}_{\lambda_2} a_2 \right);$$

Так как, по условию теоремы, $\alpha, \beta \geqslant 0$, то $\lambda_1 \geqslant 0$, $\lambda_2 \geqslant 0$, причем $\lambda_1, \lambda_2 \in [0,1]$. Очевидно, $\lambda_1 + \lambda_2 = 1$, $\lambda_2 = 1 - \lambda_1$, поэтому, в силу выпуклости множества A,

$$\underbrace{\lambda_1 a_1 + \lambda_2 a_2}_{\bar{a}} = \lambda_1 a_1 + (1 - \lambda_1) a_2 \in A;$$

значит $b = (\alpha + \beta)\bar{a}$ содержится в $(\alpha + \beta)A$. Лемма доказана.

Пространство непустых компактов $\Omega(\mathbf{E}^n)$ не является линейным пространством (например, в силу отсутствия обратного элемента по операции сложения). Однако его можно сделать метрическим.

Метрика Хаусдорфа

Рассмотрим пространство $\Omega(\mathbf{E}^n)$. Введем на нём метрику следующим образом:

$$A, B \in \Omega(\mathbf{E}^n), \quad h(A, B) = \inf_{r \geqslant 0} \{ A \subseteq B + S_r(0), B \subseteq A + S_r(0) \}.$$

Проверим аксиомы метрики:

- 1) $h(A,B) \geqslant 0$ для любых $A,B \in \Omega(\mathbf{E}^n)$, причем равенство достигается тогда и только тогда, когда A=B.
- 2) h(A, B) = h(B, A) закон коммутативности.
- 3) $h(A, B) \leq h(A, C) + h(C, B)$ неравенство треугольника.

Свойства 1) и 2) проверяются тривиально. Докажем свойство 3). Из определения метрики Хаусдорфа следует, что выполняются следующие вложения:

$$A \subseteq C + S_{h(A,C)}(0), \quad C \subseteq B + S_{h(C,B)}(0).$$

Подставив C из второго выражения в первое, получим:

$$A \subseteq B + S_{h(A,C)}(0) + S_{h(C,B)}(0) = B + S_{h(A,C)+h(C,B)}(0).$$

Аналогично

$$B \subseteq C + S_{h(C,B)}(0), \quad C \subseteq A + S_{h(A,C)}(0) \Rightarrow$$

 $B \subseteq A + S_{h(A,C)}(0) + S_{h(C,B)}(0) = A + S_{h(A,C)+h(C,B)}(0).$

Значит заведомо $h(A, B) \leq h(A, C) + h(C, B)$. Таким образом пространство компактов (не обязательно выпуклых) — метрическое.

Пример 3. Пусть имеются следующие множества: $A = S_1(0) \subseteq \mathbf{E}^2$ — шар единичного радиуса и квадрат $B = \{(x_1, x_2) \in \mathbf{E}^2 : |x_1| \leqslant 1, |x_2| \leqslant 1\}$. Найдем расстояние между ними. Очевидно $A \subset B$, т.е. условие $A \subseteq B + S_r(0)$ выполняется уже при r = 0. Найдем минимальное r при котором $B \subseteq A + S_r(0)$. Из рисунка, а также из правила сложения множеств, представляющих собой шары, видно, что искомое r равно $\sqrt{2} - 1$.

Пример 4. Найдем теперь расстояние между произвольными шарами $S_{r_1}(a_1)$ и $S_{r_2}(a_2)$. Обозначим $h = h\left(S_{r_1}(a_1), S_{r_2}(a_2)\right)$. Из определения расстояния Хаусдорфа вытекает, что

$$S_{r_1}(a_1) \subseteq S_{r_2}(a_2) + S_h(0) = S_{r_2+h}(a_2),$$

 $S_{r_2}(a_2) \subseteq S_{r_1}(a_1) + S_h(0) = S_{r_1+h}(a_1)$

Для любого элемента a из множества $S_{r_1}(a_1)$ справедливо представление $a=a_1+r_1\xi$, где ξ — некоторый элемент единичного шара $S_1(0)$. Из первого выражения следует, что если $a\in S_{r_1}(a_1)$, то $a\in S_{r_2+h}(a_2)$, значит $\|a_1+r_1\xi-a_2\|\leqslant r_2+h$.

$$\sup_{\xi \in S_1(0)} \|a_1 - a_2\| + r_1 \leqslant r_2 + h \Rightarrow \|a_1 - a_2\| + r_1 - r_2 \leqslant h.$$

Из второго выражения совершенно аналогично получаем

$$||a_1 - a_2|| + r_2 - r_1 \leqslant h.$$

Минимальное h, которое удовлетворяет сразу обоим неравенствам, равно

$$||a_1-a_2||+|r_1-r_2|,$$

то есть

$$h(S_{r_1}(a_1), S_{r_2}(a_2)) = ||a_1 - a_2|| + |r_1 - r_2|.$$

Пусть дано некоторое множество A. H = conv A — минимальное выпуклое множество, содержащее A. Построим рекурсивную цепочку множеств:

$$F_0 = A;$$

 $F_1 = \bigcup_{x,y \in F_0} [x,y] = \bigcup_{\substack{\lambda \in [0,1] \\ x,y \in F_0}} {\{\lambda x + (1-\lambda)y\}};$

$$F_{m+1} = \bigcup_{x,y \in F_m} [x,y].$$

Теорема 1. Для любого множества $A \subset \mathbf{E}^n$ существует conv A, причем

$$\operatorname{conv} A = \bigcup_{m=0}^{\infty} F_m.$$

Пример 5. Допустим, множество F_0 состоит из трех точек: $F_0 = \{a_1, a_2, a_3\}$. Рисунок

В конечномерном пространстве эта процедура конечна (в пространстве \mathbf{E}^n придется выполнить не более n шагов).

Доказательство. Обозначим

$$H = \bigcup_{m=0}^{\infty} F_m.$$

Для того, чтобы доказать, что H = conv A, нужно показать, что H выпукло, $A \subseteq H$ и для любого выпуклого множества G, содержащего A, верно $H \subseteq G$. Очевидно, множества F_i монотонно вложены друг в друга:

$$F_0 \subset F_1 \subset F_2 \subset \ldots \subset F_m \ldots \subset H$$
.

Значит $A=F_0\subseteq H$. Покажем, что H выпукло. Для любых $x,y\in H$ найдутся такие номера $m_1,m_2,$ что $x\in F_{m_1},\ y\in F_{m_2}.$ Возьмем $m=\max(m_1,m_2),$ тогда из монотонной вложенности множеств F_i получаем: $x\in F_m,\ y\in F_m.$ Отсюда, в силу правила построения последовательности $F_i,$ вытекает: $[x,y]\subseteq F_{m+1}\subseteq H,$ а это и означает, что множество H— выпуклое (по определению).

Берем теперь любое выпуклое множество G, содержащее множество A. Покажем, что G содержит H. Действительно,

$$F_0 \subseteq G, \ F_1 \subseteq G, \ F_2 \subseteq G, \ \dots, \forall m \ F_m \subseteq G, \ \dots \Rightarrow \bigcup_{m=0}^{\infty} F_m \subseteq G,$$

откуда вытекает, что $H \subseteq G$. Теорема доказана.

Лемма 2 (о строгой отделимости). Пусть $H \in \text{conv }\Omega(\mathbf{E}^n) - \text{выпуклый компакт},$ вектор $x_0 \notin H$. Тогда найдется вектор ψ из \mathbf{E}^n такой, что $\langle \psi, h - x_0 \rangle < 0$ для любого $h \in H$.

Геометрически это означает, что в ${\bf E}^n$ существует вектор ψ , который определяет опорную гиперплоскость Γ_ψ такую, что H лежит в открытом полупространстве с одной стороны относительно этой гиперплоскости, а x_0 — с другой (см. рисунок). Отсюда название леммы — строгая отделимость.

+Рисунок

Доказательство. Рассмотрим функцию $f(h) = ||h - x_0||$. По теореме Вейерштрасса она достигает своего минимального значения на компакте H. Пусть $h_0 \in H$ — точка минимума функции f(h), т.е.

$$\min_{h \in H} ||h - x_0|| = ||h_0 - x_0||.$$

Заметим, что $||h_0 - x_0|| > 0$, так как $x_0 \notin H$. Далее, возьмем любое $h \in H$ и рассмотрим функцию

$$\bar{h}(\lambda) = \lambda h + (1 - \lambda)h_0 = \lambda(h - h_0) + h_0,$$

где $\lambda \in [0,1]$. Очевидно, $\bar{h} \in H$ при любом значении λ из отрезка [0,1]. Также легко видеть, что

$$\|\bar{h}(\lambda) - x_0\|^2 \ge \|h_0 - x_0\|^2 > 0,$$

в силу того, что $\bar{h}(\lambda)$ — какое-то значение из H, а h_0 — ближайшее к x_0 . Покажем, что значение $\psi = x_0 - h_0$ удовлетворяет условиям теоремы.

Обозначим
$$z(\lambda) = \|\bar{h}(\lambda) - x_0\| = \|\lambda(h - h_0) + h_0 - x_0\|$$
, тогда

$$z^{2}(\lambda) = \langle z(\lambda), z(\lambda) \rangle = \lambda^{2} \|h - h_{0}\|^{2} + 2\lambda \langle h - h_{0}, h_{0} - x_{0} \rangle + \|h_{0} - x_{0}\|^{2} \geqslant \|h_{0} - x_{0}\|^{2}.$$

Из последнего неравенства получаем:

$$\lambda^{2} \|h - h_{0}\|^{2} + 2\lambda \langle h - h_{0}, h_{0} - x_{0} \rangle \geqslant 0.$$

Воспользовавшись тем, что λ принимает значения из отрезка [0,1], поделим последнее неравенство на λ :

$$\lambda \|h - h_0\|^2 + 2 \langle h - h_0, h_0 - x_0 \rangle \geqslant 0.$$

Устремляя λ к нулю, получаем: $\langle h - h_0, h_0 - x_0 \rangle \geqslant 0$ при любом $h \in H$. Надо показать, что $\langle h - x_0, x_0 - h_0 \rangle < 0$, или, что то же самое, $\langle h - x_0, h_0 - x_0 \rangle > 0$. Добавим и вычтем h_0 в первом сомножителе:

$$\langle h - h_0 + h_0 - x_0, h_0 - x_0 \rangle = \langle h - h_0, h_0 - x_0 \rangle + \langle h_0 - x_0, h_0 - x_0 \rangle.$$

Первое слагаемое в правой части равенства неотрицательно по доказанному выше, а второе — строго положительно в силу того, что $||h - x_0|| > 0$, то есть

$$\langle h - x_0, h_0 - x_0 \rangle > 0,$$

откуда следует утверждение леммы.

Опорные функции

При изучении свойств множеств для выпуклых компактов можно рассматривать вместо множеств функции (так как с ними работать проще).

Пусть $A \in \Omega(\mathbf{E}^n)$ — компакт.

Определение 11. Опорной функцией с (A, ψ) множества A в направлении ψ называется максимум $\langle A, \psi \rangle$:

$$c(A, \psi) = \max_{a \in A} \langle a, \psi \rangle.$$

Это определение можно расширить. Пусть A — ограниченное множество (то есть существует такое R > 0, что $A \subseteq S_R(0)$, тогда опорной функцией назовем

$$c(A, \psi) = \sup_{a \in A} (a, \psi).$$

Опорную функцию можно рассматривать как функцию множества (при фиксированном ψ), а можно как функцию вектора (при фиксированном A), что на практике используется чаще. Напомним, что скалярное произведение $\langle a, \psi \rangle$ можно представить, как $\|a\| \cdot \|\psi\| \cdot \cos \alpha$, где α — угол между векторами a и ψ . Иными словами, скалярное произведение — это величина (норма) проекции одного вектора на другой. Поэтому значение опорной функции равно величине максимальной проекции всевозможных векторов из A на вектор ψ .

Определение 12. Множество U_{ψ} векторов из A, которые имеют максимальную проекцию на вектор ψ называется *опорным множеством* множества A:

$$U_{\psi} = \{ a \in A : \langle a, \psi \rangle = c(A, \psi) \}.$$

Определение 13. Гиперплоскость $\Gamma_{\psi} = \{x \in \mathbf{E}^n : \langle x, \psi \rangle = c(A, \psi)\}$ называется опорной гиперплоскостью.

Пример 6. Пусть $A = \{a\}$ — множество из одного элемента. Тогда опорная функция имеет вид:

$$c(A, \psi) = \langle a, \psi \rangle$$

Пример 7. Найдем опорную функцию для произвольного шара $S_r(a)$.

$$c\left(S_r(a),\psi\right) = \max_{x \in S_r(a)} \langle x,\psi \rangle = \max_{\|u\| \leqslant 1} \langle a+R\cdot u,\psi \rangle = \max_{\|u\| \leqslant 1} \left(\langle a,\psi \rangle + \langle R\cdot u,\psi \rangle\right) =$$
$$= \max_{\|u\| \leqslant 1} \langle a,\psi \rangle + R\cdot \max_{\|u\| \leqslant 1} \langle u,\psi \rangle = \langle a,\psi \rangle + R\cdot \|\psi\|.$$

+Рисунок

Пример 8. Квадрат $A = \{(a_1, a_2) : |a_1| \leq 1, |a_2| \leq 1\}$. Воспользуемся тем, что скалярное произведение — это сумма попарных произведений координат:

$$c(A, \psi) = \max_{a \in A} \langle a, \psi \rangle = \max_{\substack{|a_1| \leqslant 1 \\ |a_2| \leqslant 1}} (a_1 \psi_1 + a_2 \psi_2) =$$

$$= \max_{|a_1| \leqslant 1} (a_1 \psi_1) + \max_{|a_2| \leqslant 1} (a_2 \psi_2) = |\psi_1| + |\psi_2|;$$

где a_1 и a_2 — координаты вектора a, а ψ_1 и ψ_2 — координаты вектора ψ . +Рисунок

Свойства опорных функций

1. Свойство положительной однородности по второму аргументу:

$$c(A, \lambda \psi) = \lambda c(A, \psi), \forall \lambda \geqslant 0.$$

Доказательство.

$$c\left(A,\lambda\psi\right) = \max_{a\in A}\left\langle a,\lambda\psi\right\rangle = \max_{a\in A}\lambda\left\langle a,\psi\right\rangle = \lambda\max_{a\in A}\left\langle a,\psi\right\rangle = \lambda c\left(A,\psi\right).$$

В силу этого свойства, например, функция $c(\psi) = \psi_1^2 + \psi_2^2$ не является опорной ни к какому множеству (т. к. нарушена однородность). Верно и обратное: любая положительно однородная функция является опорной к некоторому множеству.

2. Свойство полуаддитивности по второму аргументу:

$$c(A, \psi_1 + \psi_2) \le c(A, \psi_1) + c(A, \psi_2).$$

Доказательство.

$$c(A, \psi_1 + \psi_2) = \max_{a \in A} \langle a, \psi_1 + \psi_2 \rangle = \langle a_0, \psi_1 + \psi_2 \rangle =$$
$$= \langle a_0, \psi_1 \rangle + \langle a_0, \psi_2 \rangle \leqslant c(A, \psi_1) + c(A, \psi_2).$$

3. Условие Липшица (липшицевость) опорной функции по второму аргументу:

$$|c(A, \psi_1) - c(A, \psi_2)| \le |A| \cdot ||\psi_1 - \psi_2||,$$

где |A| —модуль множества A.

Доказательство.

$$c(A, \psi_1) = c(A, \psi_1 - \psi_2 + \psi_2) \stackrel{\text{CB-BO2}}{\leqslant} c(A, \psi_1 - \psi_2) + c(A, \psi_2) \Rightarrow$$
$$c(A, \psi_1) - c(A, \psi_2) \leqslant c(A, \psi_1 - \psi_2) \leqslant |A| \cdot ||\psi_1 - \psi_2||.$$

Последнее неравенство следует из очевидного

$$\max_{a \in A} |\langle a, \psi \rangle| \leqslant |A| \cdot ||\psi|| \Rightarrow |c(A, \psi)| \leqslant |A| \cdot ||\psi||.$$

Аналогично

$$c(A, \psi_2) = c(A, \psi_2 - \psi_1) + c(A, \psi_1) \iff$$
$$\iff c(A, \psi_2) - c(A, \psi_1) \leqslant c(A, \psi_2 - \psi_1) \leqslant |A| \cdot ||\psi_1 - \psi_2||.$$

Два доказанных неравенства эквивалентны следующему:

$$|c(A, \psi_1) - c(A, \psi_2)| \le |A| \cdot ||\psi_1 - \psi_2||,$$

что и требовалось доказать.

Следствие. Опорная функция $c(A, \psi)$ непрерывна по ψ : при $\psi \to \psi'$ выполняется $c(A, \psi) \to c(A, \psi')$.

Рассмотрим множество $D \cdot A$, где D — матрица размера $(n \times n)$:

$$D \cdot A = \{ x \in E^n : x = Da, a \in A \}.$$

4. $c(DA, \psi) = c(A, D^*\psi)$, где D^* — транспонированная матрица D.

Доказательство.

$$c\left(DA,\psi\right) = \max_{x \in DA} \langle x,\psi \rangle = \max_{a \in A} \langle Da,\psi \rangle = \max_{a \in A} \langle a,D^*\psi \rangle = c\left(A,D^*\psi\right)$$

Следствие. Рассмотрим частный случай этого свойства. Пусть

$$D = \{\lambda\}, \ \lambda \geqslant 0, \ \lambda \in \mathbb{R}^1,$$

тогда

$$c(\lambda A, \psi) \stackrel{\text{CB-BO}}{=} {}^{4}c(A, \lambda \psi) \stackrel{\text{CB-BO}}{=} {}^{1}\lambda c(A, \psi).$$

Это положительная однородность по первому аргументу.

5. Аддитивность по первому аргументу:

$$c(A + B, \psi) = c(A, \psi) + c(B, \psi)$$

Доказательство.

$$c(A + B, \psi) = \max_{x \in A + B} \langle x, \psi \rangle = \max_{\substack{a \in A \\ b \in B}} (a + b, \psi) = \max_{\substack{a \in A \\ b \in B}} (\langle a, \psi \rangle + \langle b, \psi \rangle) =$$

$$= \max_{a \in A} \langle a, \psi \rangle + \max_{b \in B} \langle b, \psi \rangle = c(A, \psi) + c(B, \psi)$$

Следствие. Пусть $A, B \in \Omega(\mathbf{E}^n), \ \lambda_1, \lambda_2 \geqslant 0$, тогда

$$c(\lambda_1 A + \lambda_2 B, \psi) = \lambda_1 c(A, \psi) + \lambda_2 c(B, \psi).$$

6. с $(A \cup B, \psi) = \max\{c(A, \psi), c(B, \psi)\}$. Если есть семейство множеств A_{λ} , причем $\lambda \in \Lambda$, и каждое из множеств A_{λ} ограничено, то

$$c\left(\bigcup_{\lambda \in \Lambda} A_{\lambda}, \psi\right) = \sup_{\lambda \in \Lambda} c\left(A_{\lambda}, \psi\right).$$

Это доказывается из определений:

$$\mathbf{c}\left(A \cup B, \psi\right) = \max_{x \in A \cup B} \left\langle x, \psi \right\rangle = \max\left(\max_{a \in A} \left\langle a, \psi \right\rangle, \max_{b \in B} \left\langle b, \psi \right\rangle\right) = \max\left[\mathbf{c}\left(A, \psi\right), \mathbf{c}\left(B, \psi\right)\right]$$

$$\mathbf{c}\left(\bigcup_{\lambda \in \Lambda} A_{\lambda}, \psi\right) = \sup_{x \in \cup A_{\lambda}} \left\langle x, \psi \right\rangle = \sup_{\lambda \in \Lambda} \max_{a \in A_{\lambda}} \left\langle a, \psi \right\rangle = \sup_{\lambda \in \Lambda} \mathbf{c}\left(A_{\lambda}, \psi\right).$$

7. Если A — компакт, то с (A, ψ) = с $(\text{conv } A, \psi)$ для любого ψ из \mathbf{E}^n (т.е. опорные функции для компакта и его минимальной выпуклой оболочки совпадают).

 $\ensuremath{\mathcal{A}\xspace}$ оказа
но, что для $\operatorname{conv} A$ справедливо выражение

$$\operatorname{conv} A = \bigcup_{m=0}^{\infty} F_m,$$

где F_m определяются следующими соотношениями:

$$F_0 = A;$$

 $F_1 = \bigcup_{x,y \in F_0} [x,y] = \bigcup_{\substack{\lambda \in [0,1] \\ x,y \in F_0}} {\{\lambda x + (1-\lambda)y\}};$

$$F_{m+1} = \bigcup_{x,y \in F_m} [x,y].$$

В силу свойства 6 опорных функций

$$c (\operatorname{conv} A, \psi) = c \left(\bigcup_{m=0}^{\infty} F_m, \psi \right) = \sup_{m \geqslant 0} c (F_m, \psi).$$

Покажем по индукции, что $\forall i$ с $(F_i, \psi) = c(A, \psi)$. При m=0, очевидно, $F_0 = A$ и с $(F_i, \psi) = c(A, \psi)$. Предположим, что наше равенство выполняется при некотором m:

$$c(F_m, \psi) = c(A, \psi).$$

Покажем, что оно будет выполнено при m+1:

$$\begin{split} \mathbf{c}\left(F_{m+1},\psi\right) &= \mathbf{c}\left(\bigcup_{\lambda \in [0,1]} \{\lambda F_m + (1-\lambda)F_m\}, \psi\right) \overset{\text{св-во } 6}{=} \\ &= \sup_{\lambda \in [0,1]} \mathbf{c}\left(\{\lambda F_m + (1-\lambda)F_m\}, \psi\right) \overset{\text{св-во } 5}{=} \\ &= \sup_{\lambda \in [0,1]} \left(\lambda \mathbf{c}\left(F_m, \psi\right) + (1-\lambda)\mathbf{c}\left(F_m, \psi\right)\right) \overset{\text{предп.}}{=} \\ &= \sup_{\lambda \in [0,1]} \left(\lambda \mathbf{c}\left(A, \psi\right) + (1-\lambda)\mathbf{c}\left(A, \psi\right)\right) = \sup_{\lambda \in [0,1]} \mathbf{c}\left(A, \psi\right) = \mathbf{c}\left(A, \psi\right). \end{split}$$

Далее,

$$c\left(\operatorname{conv} A, \psi\right) = \sup_{m \geqslant 0} c\left(F_m, \psi\right) = \sup_{m \geqslant 0} c\left(A, \psi\right) = c\left(A, \psi\right).$$

Пример 9. Найдем опорную функцию для сферы единичного радиуса:

$$S = \{ x \in \mathbf{E}^n : ||x|| = 1 \}.$$

Очевидно, для любого вектора ψ максимум скалярного произведения

$$\langle x, \psi \rangle = ||x|| \cdot ||\psi|| \cdot \cos \alpha$$

будет достигаться на векторах, коллинеарных ψ , и будет равен (так как ||x|| = 1)

$$c(S, \psi) = \|\psi\|.$$

Раньше мы уже искали опорную функцию для шара (см. пример 7), поэтому

$$c(S_1(0), \psi) = ||\psi||.$$

Заметим, что опорные функции для сферы S и ее минимальной выпуклой оболочки — шара $S_1(0)$ — совпадают, что наглядно демонстрирует свойство 7. + Рисунок.

Покажем теперь, как, используя данное свойство, можно упростить нахождение опорной функции.

Пример 10. Найдем теперь опорную функцию для множества $A = \{v, -v\}$, где $v \in \mathbf{E}^n$.

$$c(A, \psi) = \max(\langle \psi, v \rangle, \langle \psi, -v \rangle) = |\langle \psi, v \rangle|.$$

Заметим, что согласно седьмому свойству опорная функция для отрезка [v,-v], который является минимальной выпуклой оболочкой множества A будет такой же:

$$\mathbf{c}\left([-v,v],\psi\right)=\mathbf{c}\left(\operatorname{conv}A,\psi\right)=\left|\left\langle \psi,v\right\rangle \right|.$$

Пример 11. Пусть множество A состоит из четырех точек:

$$A = \{(1,1), (1,-1), (-1,1), (-1,-1)\}.$$

В примере 8 мы уже искали опорную функцию для минимальной выпуклой оболочки множества A (это квадрат с такими же координатами вершин). Поэтому

$$c(A, \psi) = c(\text{conv } A, \psi) = ||\psi_1|| + ||\psi_2||$$

+ Рисунок

15

Пример 12. Эллипсоид:

$$\mathcal{E} = \left\{ x \in \mathbf{E}^n : \frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} + \dots + \frac{x_n^2}{a_n^2} \leqslant 1 \right\}.$$

Можно записать по-другому: $\mathcal{E} = L \cdot S_1(0)$, где

$$L = \begin{pmatrix} a_1 & & & 0 \\ & a_2 & & \\ & & \ddots & \\ 0 & & & a_n \end{pmatrix};$$

Так как $L^* = L$, то, согласно свойству 4,

$$c(\mathcal{E}, \psi) = c(L \cdot S_1(0), \psi) = c(S_1(0), L\psi) = ||L\psi|| = \sqrt{a_1^2 \psi_1^2 + a_2^2 \psi_2^2 + \dots + a_n^2 \psi_n^2}$$

Пример 13. Построим опорную функцию для произвольного шара:

$$A = S_R(a) = \{a\} + R \cdot S_1(0)$$

$$c(A, \psi) = c(a + R \cdot S_1(0), \psi) \stackrel{\text{св-во } 1}{\underset{\text{св-во } 5}{=}} c(\{a\}, \psi) + R \cdot c(S_1(0), \psi) = \langle a, \psi \rangle + R \cdot \|\psi\|.$$
 +какие-то рисунки

Теорема 2. Пусть $A - \kappa омпакт$, тогда

$$\operatorname{conv} A = \bigcap_{\psi \in S} \left\{ x \in \mathbf{E}^n : \langle x, \psi \rangle \leqslant \operatorname{c}(A, \psi) \right\}.$$

Доказательство. Введем обозначение:

$$\Pi_{\psi} = \{ x \in \mathbf{E}^n : \langle x, \psi \rangle \leqslant c(A, \psi) \};$$

тогда утверждение теоремы можно переформулировать, как

$$\operatorname{conv} A = \bigcap_{\psi \in S} \Pi_{\psi}.$$

Для доказательства равенства двух множеств покажем, что имеет место вложение одного множества в другое и наоборот.

Возьмем любое a из conv A и любое ненулевое $\psi \in \mathbf{E}^n$. Имеем:

$$\langle a, \psi \rangle \leqslant \max_{a \in \text{conv } A} \langle a, \psi \rangle = c \left(\text{conv } A, \psi \right) \stackrel{\text{cb-bo}}{=} {}^7 c \left(A, \psi \right) \Rightarrow$$

$$a \in \Pi_{\psi} \left(\forall \psi \right) \Rightarrow \text{conv } A \subseteq \bigcap_{\psi \in S} \Pi_{\psi}.$$

Теперь покажем вложение в другую сторону:

$$\operatorname{conv} A \supseteq \bigcap_{\psi \in S} \Pi_{\psi}.$$

Предположим противное, то есть $\exists x_0 \in \Pi_{\psi}$ для любого $\psi \in S$, но $x_0 \notin \text{conv } A$. По лемме об отделимости найдется вектор $\psi_0 \in \mathbf{E}^n$ такой, что $\langle a - x_0, \psi_0 \rangle < 0$ для любого a из conv A. Разбив в скалярном произведении первый множитель на два слагаемых получим:

$$\langle a, \psi_0 \rangle < \langle x_0, \psi_0 \rangle \ (\forall a) \Rightarrow \max_{a \in \text{conv } A} \langle a, \psi_0 \rangle < \langle x_0, \psi_0 \rangle$$

 $c (conv A, \psi_0) < \langle x_0, \psi_0 \rangle \Leftrightarrow c (A, \psi_0) < \langle x_0, \psi_0 \rangle.$

Но, так как

$$x_0 \in \bigcap_{\psi \in S} \Pi_{\psi},$$

TO

$$\left\langle x_0, \frac{\psi_0}{\|\psi_0\|} \right\rangle \leqslant c \left(A, \frac{\psi_0}{\|\psi_0\|} \right) \stackrel{\text{CB-BQ}}{\Longrightarrow}^4$$

$$\frac{1}{\|\psi_0\|} \left\langle x_0, \psi_0 \right\rangle \leqslant \frac{1}{\|\psi_0\|} c \left(A, \psi_0 \right) \Longrightarrow \left\langle x_0, \psi_0 \right\rangle \leqslant c \left(A, \psi_0 \right).$$

Таким образом мы пришли к противоречию, что доказывает ложность нашего предположения. \Box

Согласно теореме 2 для выпуклого компакта A справедливо представление

$$A = \bigcap_{\psi \in S} \{ x \in \mathbf{E}^n : \langle x, \psi \rangle \leqslant c(A, \psi) \};$$

то есть по опорной функции можно восстановить выпуклое множество.

8. Если $A_1 \subseteq A_2$, то с $(A_1, \psi) \leqslant$ с (A_2, ψ) для любого $\psi \in \mathbf{E}^n$, а из этого условия, в свою очередь следует, что conv $A_1 \subseteq \text{conv } A_2$.

Доказательство.

$$c(A_1, \psi) = \max_{a \in A_1} \langle a, \psi \rangle \leqslant \max_{a \in A_2} \langle a, \psi \rangle = c(A_2, \psi).$$

Отсюда получаем:

$$\underbrace{\bigcap_{\psi \in S} \left\{ x \in \mathbf{E}^n : \langle x, \psi \rangle \leqslant \operatorname{c}(A_1, \psi) \right\}}_{\operatorname{conv} A_1} \subseteq \underbrace{\bigcap_{\psi \in S} \left\{ x \in \mathbf{E}^n : \langle x, \psi \rangle \leqslant \operatorname{c}(A_2, \psi) \right\}}_{\operatorname{conv} A_2}$$

Следствие. Если A_1, A_2 — выпуклые множества, то верны и обратные импликации:

$$A_1 \subseteq A_2 \Leftrightarrow c(A_1, \psi) \leqslant c(A_2, \psi) \Leftrightarrow conv_{A_1} \subseteq conv_{A_2} \quad \forall \psi \in \mathbf{E}^n$$

9. Если $a \in A$, то $a \in \text{conv } A$. Так как $a \in A$, то

$$\langle a, \psi \rangle \leqslant \operatorname{c}(A, \psi) \ \forall \psi \in S \Rightarrow a \in \operatorname{conv} A.$$

Иначе, можно положить $A_1 = \{a\}$, $A_2 = A$, тогда будет выполняться $A_1 \subseteq A_2$. Воспользовавшись свойством 8, мы сразу приходим к нашему утверждению.

Следствие. Если A — выпуклый компакт ($A \in \text{conv } \Omega(\mathbf{E}^n)$), то

$$a \in A \Leftrightarrow \langle a, \psi \rangle \leqslant c(A, \psi) \quad \forall \psi \in S.$$

10. Если $0 \in A$, то с $(A, \psi) \geqslant 0$ для любого $\psi \in S$, а значит $0 \in \text{conv } A$. Это свойство является прямым следствие свойства 9: достаточно положить a = 0.

Следствие. Если A — выпуклый компакт, то условия $0 \in A$ и

$$c(A, \psi) \geqslant 0 \ \forall \psi \in S$$

эквивалентны.

Следствие. Если A — выпуклый компакт, то следующие два условия эквивалентны:

$$0 \in \operatorname{int} A \iff \operatorname{c}(A, \psi) > 0 \ \forall \psi \in S.$$

11. Если A и B — компакты, причем $A \cap B \neq \emptyset$, то

$$c(A, \psi) + c(B, -\psi) \ge 0 \ \forall \psi \in S,$$

а из этого условия, в свою очередь следует, что

$$\operatorname{conv} A \cap \operatorname{conv} B \neq \emptyset$$

Доказательство. Так как пересечение множеств A и B непусто, то найдется элемент f, содержащийся и в том, и в другом множестве. В таком случае

$$-f \in -B \Rightarrow f + (-f) \in A + (-B) \Rightarrow 0 \in A + (-B) \overset{\text{cb-bo } 10}{\Rightarrow} \underset{\forall \psi \in \mathbf{E}^n}{\overset{\text{cb-bo } 10}{\Rightarrow}}$$

$$c(A + (-B), \psi) \ge 0 \Rightarrow c(A, \psi) + c(-B, \psi) = c(A, \psi) + c(B, -\psi) \ge 0;$$

из последнего неравенства, согласно свойству 7, получаем:

$$c\left(\operatorname{conv} A,\psi\right) + c\left(\operatorname{conv} B,-\psi\right) \geqslant 0 \overset{\operatorname{cb-ba}}{\Longrightarrow}^{\operatorname{cb-ba}} c\left(\operatorname{conv} A + (-\operatorname{conv} B),\psi\right) \geqslant 0 \overset{\operatorname{cb-bo}}{\Longrightarrow}^{\operatorname{10}}$$
$$0 \in \operatorname{conv} A + (-\operatorname{conv} B) \Leftrightarrow \operatorname{conv} A \cap \operatorname{conv} B \neq \varnothing.$$

Следствие. Если A и B — выпуклые компакты, то

$$A \cap B \neq \emptyset \iff c(A, -\psi) + c(B, \psi) \geqslant 0 \quad \forall \psi \in S.$$

Пример 14. Пусть A = S, $B = S_{\varepsilon}(0)$ (шар радиуса ε , где $\varepsilon < 1$). Тогда:

$$c(S, \psi) + c(S_{\varepsilon}(0), -\psi) = ||\psi|| + \varepsilon \cdot ||-\psi|| = (1+\varepsilon)||\psi|| > 0 \quad \forall \psi \neq 0.$$

Значит $S \cap S_{\varepsilon}(0) = \emptyset$.

12.
$$|c(A_1, \psi) - c(A_2, \psi)| \le ||\psi|| \cdot h(A_1, A_2)$$
.

Доказательство. Из определения расстояния Хаусдорфа следует, что

$$A_1 \subseteq A_2 + S_{h(A_1,A_2)}(0);$$

но тогда, в силу свойства 8,

$$c(A_1, \psi) \le c(A_2 + S_{h(A_1, A_2)}(0), \psi) \quad \forall \psi \ne 0 \stackrel{\text{cb-bo}}{\Longrightarrow} c(A_1, \psi) \le$$

$$\leq c(A_2, \psi) + c(S_{h(A_1, A_2)}(0), \psi) = c(A_2, \psi) + h(A_1, A_2) \cdot ||\psi||;$$

то есть $c(A_1, \psi) - c(A_2, \psi) \leq h(A_1, A_2) \cdot ||\psi||$. Аналогично:

$$A_2 \subseteq A_1 + S_{h(A_1,A_2)}(0);$$

следовательно с (A_2, ψ) – с $(A_1, \psi) \leq h(A_1, A_2) \cdot ||\psi||$. Вместо двух вышеуказанных неравенств получаем одно с модулем:

$$|c(A_1, \psi) - c(A_2, \psi)| \le ||\psi|| \cdot h(A_1, A_2).$$

13. Пусть A, B — выпуклые компакты. Тогда

$$h(A, B) = \max_{\psi \in S} |c(A, \psi) - c(B, \psi)|.$$

Доказательство. Введем обозначение

$$M = \max_{\psi \in S} |c(A, \psi) - c(B, \psi)|$$

Согласно свойству 12 имеем:

$$|c(A, \psi) - c(B, \psi)| \le ||\psi|| \cdot h(A, B).$$

Значит для любого ψ из единичной сферы S имеет место неравенство:

$$|c(A, \psi) - c(B, \psi)| \leqslant h(A, B);$$

$$\max_{\psi \in S} |c(A, \psi) - c(B, \psi)| \leqslant h(A, B) \Rightarrow M \leqslant h(A, B).$$

В то же время

$$M \geqslant |\operatorname{c}(A, \psi) - \operatorname{c}(B, \psi)| \quad \forall \psi \in S \Longrightarrow$$

$$M \geqslant \left| \operatorname{c}(A, \frac{\psi}{\|\psi\|}) + \operatorname{c}(B, \frac{\psi}{\|\psi\|}) \right| \quad \forall \psi \in \mathbf{E}^{n};$$

$$M \geqslant \left| \frac{1}{\|\psi\|} \operatorname{c}(A, \psi) - \frac{1}{\|\psi\|} \operatorname{c}(B, \psi) \right| = \frac{1}{\|\psi\|} |\operatorname{c}(A, \psi) - \operatorname{c}(B, \psi)| \quad \forall \psi \in \mathbf{E}^{n};$$

$$|\operatorname{c}(A, \psi) - \operatorname{c}(B, \psi)| \leqslant M \cdot \|\psi\|;$$

$$-M \cdot \|\psi\| \leqslant \operatorname{c}(A, \psi) - \operatorname{c}(B, \psi) \leqslant M \cdot \|\psi\| \quad \forall \psi \in \mathbf{E}^{n}.$$

Из правого неравенства получаем:

$$c(A, \psi) \leq c(B, \psi) + M \cdot ||\psi|| \stackrel{\text{CB-BO}}{\Longrightarrow} A \subseteq B + S_M(0);$$

а из левого аналогичным образом:

$$c(B, \psi) \leq c(A, \psi) + M \cdot ||\psi|| \stackrel{\text{CB-BO}}{\Longrightarrow} B \subseteq A + S_M(0);$$

значит $h(A, B) \leq M$. Выше мы показали, что также $M \leq h(A, B)$, а такое возможно только при M = h(A, B).

2 Многозначные отображения

Определение 14. *Многозначным отображением* F(t) называется функция

$$F(t): \mathbb{R}^1 \longrightarrow \Omega(\mathbf{E}^n).$$

Пример 15. Многозначным отображением является функция

$$F(t) = S_{|t|}(2t)$$

+Рисунок

Определение 15. Многозначное отображение F(t) непрерывно в точке t_0 , если для любого $\varepsilon > 0$ найдется $\delta > 0$ (возможно зависящее от ε) такое, что при $|t - t_0| < \delta$ будет выполняться h $(F(t), F(t_0)) < \varepsilon$, или, что то же самое,

$$|t - t_0| < \delta \Rightarrow \begin{cases} F(t) \subseteq F(t_0) + S_{\varepsilon}(0) \\ F(t_0) \subseteq F(t) + S_{\varepsilon}(0) \end{cases}$$
.

Пример 16. Следующее отображение непрерывно:

$$F(t) = \begin{cases} 0, & t \le 0 \\ t \cdot \{-1, 1\}, & t > 0. \end{cases}$$

Достаточно в определении взять $\delta = \varepsilon$.

Лемма 3. Если многозначное отображение F(t) непрерывно по t, то опорная функция $c(F(t), \psi)$ непрерывна по t равномерно по всем $\psi \in S$, а в этом случае $\operatorname{conv} F(t)$ будет непрерывно по t.

Непрерывность опорной функции равномерно по любому $\psi \in S$ означает, что в выражении $|t-t_0| < \delta$ величина δ одна и та же для всех $\psi \in S$ (не зависит от ψ).

Доказательство. Пусть F(t) непрерывно по t. Тогда, согласно свойству 12,

$$|\operatorname{c}(F(t), \psi) - \operatorname{c}(F(t_0), \psi)| \leqslant \operatorname{h}(F(t), F(t_0)) \cdot ||\psi|| \underset{\psi \in S}{=} \operatorname{h}(F(t), F(t_0)).$$

В силу непрерывности F(t) величина h $(F(t), F(t_0))$ для всех $\psi \in S$ стремится к нулю при $t \to t_0$. Заметим также, что написанное выше неравенство является условием Липшица по F(t) с коэффициентом $\|\psi\| = 1$. Непрерывность с $(F(t), \psi)$ по t равномерно по всем $\psi \in S$ доказана.

Пусть теперь с $(F(t), \psi)$ непрерывна по t равномерно по всем $\psi \in S$. Согласно свойству 13

$$\begin{aligned} \mathbf{h}\left(\operatorname{conv} F(t), \operatorname{conv} F(t_0)\right) &= \max_{\psi \in S} \left|\mathbf{c}\left(\operatorname{conv}\left(F(t), \psi\right) - \mathbf{c}\left(\operatorname{conv} F(t_0), \psi\right)\right| \stackrel{\text{\tiny CB-BO}}{=} 7 \\ &= \max_{\psi \in S} \left|\mathbf{c}\left(F(t), \psi\right) - \mathbf{c}\left(F(t_0), \psi\right)\right|. \end{aligned}$$

Величина, стоящая под максимумом при всех $\psi \in S$ стремится к нулю при $t \to t_0$ в силу непрерывности опорной функции по t. Отсюда по определению непрерывности получаем, что conv F(t) — непрерывное многозначное отображение.

Замечание. Рассуждения во второй части доказательства леммы можно проделать и в обратную сторону: если $\operatorname{conv} F(t)$ — непрерывное отображение, то $\operatorname{c}(F(t),\psi)$ непрерывна.

Лемма 4. Для того, чтобы выпуклое многозначное отображение F(t) было непрерывным, необходимо и достаточно, чтобы опорная функция $c(F(t), \psi)$ была непрерывной при каждом фиксированном $\psi \in \mathbf{E}^n$.

Доказательство. В лемме 3 было показано, что conv F(t) непрерывна тогда и только тогда, когда с $(F(t), \psi)$ непрерывна по t равномерно по всем $\psi \in S$. Покажем, что следующие два факта эквивалентны:

- с $(F(t), \psi)$ непрерывна по t равномерно по всем $\psi \in S$ и
- $c(F(t), \psi)$ непрерывна по t при каждом фиксированном $\psi \in \mathbf{E}^n$.

Докажем, что из первого утверждения следует второе. Пусть известно, что

$$|c(F(t), \psi) - c(F(t_0), \psi)| < \varepsilon \quad \forall \psi \in S, \text{ при } |t - t_0| < \delta.$$
 (1)

Фиксируем произвольное $\psi_0 \in \mathbf{E}^n$. По следствию из свойства 4 имеем:

$$|c(F(t), \psi_0) - c(F(t_0), \psi_0)| = ||\psi_0|| \cdot |c(F(t), \frac{\psi_0}{||\psi_0||}) - c(F(t_0), \frac{\psi_0}{||\psi_0||})|;$$

при этом $\frac{\psi_0}{\|\psi_0\|} \in S$, и из определения (1) непрерывности с $(F(t), \psi)$ по t равномерно по всем $\psi \in S$ вытекает, что

$$\|\psi_0\| \cdot \left| c\left(F(t), \frac{\psi_0}{\|\psi_0\|} \right) - c\left(F(t_0), \frac{\psi_0}{\|\psi_0\|} \right) \right| < \varepsilon \cdot \|\psi_0\|, \text{ при } |t - t_0| < \delta;$$

(здесь уже существенно то, что вектор ψ зафиксирован).

Покажем теперь, что верно и обратное: из непрерывности с $(F(t), \psi)$ при любом фиксированном $\psi \in \mathbf{E}^n$ следует непрерывность с $(F(t), \psi)$ по t равномерно по всем $\psi \in S$. Предположим, что это не так, то есть существует такая последовательность $\{t_k\}$, сходящаяся к некоторому t_0 , что для любого ψ из S:

$$|c(F(t_k), \psi) - c(F(t_0), \psi)| > r > 0$$
 (2)

для всех k больших некоторого K. Воспользуемся тем, что сфера — компакт. Без ограничения общности будем считать, что $\psi_k \to \psi_0$ при $k \to \infty$, причем ψ_0 лежит в S (в силу компактности сферы).

$$|c(F(t_k), \psi) - c(F(t_0), \psi)| =$$

$$= |c(F(t_k), \psi_k) - c(F(t_k), \psi_0) + c(F(t_k), \psi_0) - c(F(t_0), \psi_0) + c(F(t_0), \psi_0) - c(F(t_0), \psi_0) - c(F(t_0), \psi_0) | \leq$$

$$\leq |\operatorname{c}\left(F(t_{k}), \psi_{k}\right) - \operatorname{c}\left(F(t_{k}), \psi_{0}\right)| + |\operatorname{c}\left(F(t_{k}), \psi_{0}\right) - \operatorname{c}\left(F(t_{0}), \psi_{0}\right)| + \\ + |\operatorname{c}\left(F(t_{0}), \psi_{0}\right) - \operatorname{c}\left(F(t_{0}), \psi_{k}\right)| \leq \text{ ych. Липшица по 2-ому аргументу}$$

$$\leq |F(t_k)| \cdot ||\psi_k - \psi_0|| + |c(F(t_k), \psi_0) - c(F(t_0), \psi_0)| + |F(t_0)| \cdot ||\psi_k - \psi_0||$$
 (3)

Второе слагаемое $|c(F(t_k), \psi_0) - c(F(t_0), \psi_0)|$ в силу непрерывности опорной функции при фиксированном ψ_0 стремится к нулю при $t_k \to t_0$. В третьем слагаемом

 $F(t_0)$ представляет собой фиксированный компакт, следовательно его модуль $|F(t_0)|$ ограничен, а $\|\psi_k - \psi_0\| \to 0$ при $k \to \infty$, поэтому всё слагаемое стремится к нулю. В первом слагаемом также $\|\psi_k - \psi_0\| \to 0$ при $k \to \infty$. Покажем, что $F(t_k)$ ограничен при всех k. Предположим противное: $F(t_k) \to \infty$ при $k \to \infty$.

$$|F(t_k)| = \min_{r>0} \{r : F(t_k) \subseteq S_r(0)\} =$$

$$= \min_{r>0} \{r : c(F(t_k), \psi) \leqslant r \ \forall \psi \in S\} = \max_{\psi \in S} c(F(t_k), \psi) \quad (4)$$

Так как $F(t_k)$ является компактом при любом k, то максимум достигается при какомто $\varphi_0 \in S$. Возьмем произвольную последовательность $\{\varphi_k\}$, лежащую в S и сходящуюся к φ_0 :

$$c\left(F(t_{k}),\varphi_{k}\right)-c\left(F(t_{k}),\varphi_{0}\right) \overset{\text{\tiny CB-BO }3}{\leqslant} |F(t_{k})| \cdot \|\varphi_{k}-\varphi_{0}\| \stackrel{(4)}{=} c\left(F(t_{k}),\varphi_{k}\right) \cdot \|\varphi_{k}-\varphi_{0}\| \Longrightarrow c\left(F(t_{k}),\varphi_{k}\right) \cdot \underbrace{\left(1-\|\varphi_{k}-\varphi_{0}\|\right)}_{\rightarrow 1} \leqslant c\left(F(t_{k}),\varphi_{0}\right)$$

По нашему предположению $|F(t_k)|$ стремится к бесконечности при $k \to \infty$, а значит и с $(F(t_k), \psi) \to \infty$, и вся левая часть неравенства стремится к бесконечности при $k \to \infty$. В то же время функция с $(F(t_k), \psi_0)$ непрерывна при фиксированном ψ_0 , поэтому ограничена на множестве значений $\{t_k\}$. Мы приходим к противоречию, из-за чего наше предположение о неограниченности $F(t_k)$ неверно. Но в этом случае в выражении (3) каждое из трех слагаемых стремится к нулю при $k \to \infty$, поэтому условие (2) нарушения непрерывности оказывается невыполненным, и мы приходим ко второму противоречию. Значит наше изначальное предположение о том, что функция с $(F(t_k), \psi)$ не является непрерывной по t равномерно по всем $\psi \in S$ неверно и лемма полностью доказана.

Определение 16. Многозначное отображение $F(t): \mathbb{R}^1 \longrightarrow \Omega(\mathbf{E}^n)$ называется измеримым, если для любого $\varepsilon > 0$ и любого компакта K множество

$$\{t: h(F(t), K) < \varepsilon\}$$

измеримо по Лебегу.

Лемма 5. Если множество F(t) измеримо, то $c(F(t), \psi)$ — измеримая функция для любого $\psi \in \mathbf{E}^n$ и обратно: если $c(F(t), \psi)$ — измеримая функция для любого $\psi \in \mathbf{E}^n$, то множество $\mathrm{conv}\, F(t)$ измеримо.

Примем данную лемму без доказательства.

Определение 17. Функция $f(t): \mathbb{R}^1 \longrightarrow \mathbb{R}^n$ называется однозначной ветвью многозначного отображения $F(t): \mathbb{R}^1 \longrightarrow \Omega(\mathbb{R}^n)$, если для любого t верно $f(t) \in F(t)$.

Пример 17. Пусть многозначное отображение задано формулой

$$F(t) = t \cdot \{-1, 1\}.$$

Тогда функции f(t) = t, f(t) = -t, f(t) = |t| будут однозначными ветвями данного многозначного отображения. Ветвь может быть и разрывной, например:

$$f(t) = \begin{cases} t, & t \geqslant \frac{1}{2}, \\ -t, & t < \frac{1}{2}. \end{cases}$$

Определение 18. Зафиксируем вектор $\psi_0 \neq 0$ и компакт A. Для произвольного вектора назовем величину

$$c'(A, \psi_0; \psi) = \lim_{\alpha \to +0} \underbrace{\left\{ \frac{c(A, \psi_0 + \alpha \psi) - c(A, \psi_0)}{\alpha} \right\}}_{S}$$

производной опорной функции $c(A, \psi_0)$ по направлению ψ .

Покажем, что последовательность $\{S_{\alpha}\}$ сходится (чтобы показать корректность определения производной).

$$c(A, \psi_0) = c(A, \psi_0 + \alpha \psi - \alpha \psi) \stackrel{\text{\tiny CB-BO}}{\leq}$$

$$\leq c(A, \psi_0 + \alpha \psi) + c(A, -\alpha \psi) = c(A, \psi_0 + \alpha \psi) + \alpha c(A, -\psi);$$

$$\frac{c(A, \psi_0 + \alpha \psi) - c(A, \psi_0)}{\alpha} \geqslant \frac{c(A, \psi_0 + \alpha \psi) - c(A, \psi_0 + \alpha \psi) - \alpha c(A, -\psi)}{\alpha} = c(A, -\psi);$$

откуда получаем, что последовательность $\{S_{\alpha}\}$ ограничена снизу. Докажем монотонное убывание. Берем числа α_1 и α_2 такие, что $0<\alpha_2<\alpha_1$. Пусть $\frac{\alpha_2}{\alpha_1}=\lambda$. Тогда $1-\lambda=\frac{\alpha_1-\alpha_2}{\alpha_1}$. Обозначим также

$$x_1 = \psi_0 + \alpha_1 \psi,$$

$$x_2 = \psi_0;$$

получаем:

$$\lambda x_{1} + (1 - \lambda)x_{2} = \frac{\alpha_{2}}{\alpha_{1}}(\psi_{0} + \alpha_{1}\psi) + \frac{\alpha_{1} - \alpha_{2}}{\alpha_{1}}\psi_{0} = \psi_{0} + \alpha_{2}\psi.$$

$$c(A, \psi_{0} + \alpha_{2}\psi) = c(A, \lambda x_{1} + (1 - \lambda)x_{2}) \leqslant \lambda \cdot c(A, \psi_{0} + \alpha_{1}\psi) + (1 - \lambda) \cdot c(A, \psi_{0}) =$$

$$= \frac{\alpha_{2}}{\alpha_{1}}c(A, \psi_{0} + \alpha_{1}\psi) + \frac{\alpha_{1} - \alpha_{2}}{\alpha_{1}}c(A, \psi_{0});$$

$$c(A, \psi_{0} + \alpha_{2}\psi) \leqslant \frac{\alpha_{2}}{\alpha_{1}}c(A, \psi_{0} + \alpha_{1}\psi) + c(A, \psi_{0}) - \frac{\alpha_{2}}{\alpha_{1}}c(A, \psi_{0}).$$

Вычтем из обеих частей этого неравенства с (A, ψ_0) и разделим на α_2 .

$$\frac{c\left(A,\psi_{0}+\alpha_{2}\psi\right)-c\left(A,\psi_{0}\right)}{\alpha_{2}}\leqslant\frac{c\left(A,\psi_{0}+\alpha_{1}\psi\right)-c\left(A,\psi_{0}\right)}{\alpha_{1}}.$$

Следовательно последовательность $\{S_{\alpha}\}$ невозрастает при $\alpha \to +0$, так как $S_{\alpha_2} \leqslant S_{\alpha_1}$ при $\alpha_2 < \alpha_1$, и, по доказанному, ограничена снизу, а значит при любом ψ имеет предел.

Итак, определение производной корректно. Покажем, что введенная таким образом функция обладает положительной однородностью и полуаддитивностью по второму аргументу, то есть

- $c'(A, \psi_0; \lambda \psi) = \lambda \cdot c'(A, \psi_0; \psi)$ для любого $\lambda \geqslant 0$;
- $\mathbf{c}'(A, \psi_0; \psi_1 + \psi_2) \leqslant \mathbf{c}'(A, \psi_0; \psi_1) + \mathbf{c}'(A, \psi_0; \psi_2)$ для произвольных $\psi_1, \psi_2 \in \mathbf{E}^n$.

Положительная однородность:

$$c'(A, \psi_0; \lambda \psi) = \lim_{\alpha \to +0} \frac{c(A, \psi_0 + \alpha \lambda \psi) - c(A, \psi_0)}{\alpha}$$

Домножим и разделим выражение под знаком предела на λ и введем новую переменную $\beta = \alpha \lambda$:

$$\lambda \cdot \lim_{\lambda \alpha \to +0} \frac{c(A, \psi_0 + \alpha \lambda \psi) - c(A, \psi_0)}{\lambda \alpha} = \lambda \cdot \lim_{\beta \to +0} \frac{c(A, \psi_0 + \beta \psi) - c(A, \psi_0)}{\beta} =$$
$$= \lambda \cdot c'(A, \psi_0; \psi).$$

Полуаддитивность:

$$c'(A, \psi_0; \psi_1 + \psi_2) = \lim_{\alpha \to +0} \frac{c(A, \psi_0 + \alpha(\psi_1 + \psi_2)) - c(A, \psi_0)}{\alpha} =$$

$$= \lim_{\frac{\alpha}{2} \to +0} \frac{c(A, \psi_{0} + \frac{\alpha}{2}(\psi_{1} + \psi_{2})) - c(A, \psi_{0})}{\frac{\alpha}{2}} =$$

$$= \lim_{\frac{\alpha}{2} \to +0} \frac{c(A, \frac{1}{2}(\psi_{0} + \alpha\psi_{1}) + \frac{1}{2}(\psi_{0} + \alpha\psi_{2})) - c(A, \psi_{0})}{\frac{\alpha}{2}} \lesssim_{\text{CB-BO } 2} \lesssim_{\text{CB-BO } 4}$$

$$\leqslant \lim_{\frac{\alpha}{2} \to +0} \frac{\frac{1}{2}c(A, \psi_{0} + \alpha\psi_{1}) + \frac{1}{2}c(A, \psi_{0} + \alpha\psi_{2}) - c(A, \psi_{0})}{\frac{\alpha}{2}} =$$

$$= \lim_{\alpha \to +0} \frac{c(A, \psi_{0} + \alpha\psi_{1}) + c(A, \psi_{0} + \alpha\psi_{2}) - 2c(A, \psi_{0})}{\alpha} =$$

$$= \lim_{\alpha \to +0} \frac{c(A, \psi_{0} + \alpha\psi_{1}) - c(A, \psi_{0})}{\alpha} + \lim_{\alpha \to +0} \frac{c(A, \psi_{0} + \alpha\psi_{2}) - c(A, \psi_{0})}{\alpha} =$$

$$= c'(A, \psi_{0}; \psi_{1}) + c'(A, \psi_{0}; \psi_{2}).$$

Теорема 3 (о существовании однозначной измеримой ветви). Пусть многозначное отображение $F(t): \mathbb{R}^1 \longrightarrow \Omega(\mathbf{E}^n)$ измеримо. Тогда существует измеримая однозначная ветвь f(t), причем для любого $\psi_0 \neq 0$ эту ветвь можно выбрать так, что $f(t) \in \mathrm{U}(F(t), \psi_0)$.

Напомним, что опорное множество U (A, ψ_0) представляет собой множество векторов из A, имеющих максимальную проекцию на вектор ψ_0 :

$$U(A, \psi_0) = \{ a \in A : \langle a, \psi_0 \rangle = c(A, \psi_0) \}.$$

Очевидно, опорное множество U (A, ψ_0) является подмножеством опорной гиперплоскости $\Gamma_{\psi_0} = \{x \in \mathbf{E}^n : \langle x, \psi_0 \rangle = \operatorname{c}(A, \psi_0)\}$; и U $(A, \psi_0) = A \cap \Gamma_{\psi_0}$. В то же время

$$\operatorname{conv} U(A, \psi_0) = \operatorname{conv} A \cap \Gamma_{\psi_0}; \tag{5}$$

(см. рисунок), а также, в силу равенства conv $U(A, \psi_0) = \text{conv}(A \cap \Gamma_{\psi_0})$,

$$\operatorname{conv}(A \cap \psi_0) = \operatorname{conv} A \cap \Gamma_{\psi_0}. \tag{6}$$

Конечно же равенство 5 обосновано нестрого. Примем его на веру.

Лемма 6. Если выпуклая и конечная функция $f(\psi)$ обладает положительной однородностью, то есть $f(\alpha\psi) = \alpha f(\psi)$ при $\alpha \geqslant 0$, то $f(\psi)$ является опорной к некоторому выпуклому компакту.

Напомним, что выпуклой называется функция для которой выполняется неравенство

$$f(\psi_1 + \psi_2) \leqslant f(\psi_1) + f(\psi_2).$$

Доказательство. Покажем что множество

$$F = \bigcap_{\psi \in S} \{x : \langle x, \psi \rangle \leqslant f(\psi)\}$$

является искомым выпуклым компактом.

Возьмем произвольное $x \in F$. Для любого ненулевого $\psi \in \mathbf{E}^n$ будет выполняться неравенство

$$\left\langle x, \frac{\psi}{\|\psi\|} \right\rangle \leqslant f\left(\frac{\psi}{\|\psi\|}\right),$$

так как вектор $\frac{\psi}{\|\psi\|}$ содержится в S. Воспользовавшись однородностью функции $f(\psi)$, вынесем множитель $\frac{1}{\|\psi\|}$ из-под знака функции и из скалярного произведения:

$$\frac{1}{\|\psi\|} \langle x, \psi \rangle \leqslant \frac{1}{\|\psi\|} f(\psi);$$

$$\langle x, \psi \rangle \leqslant f(\psi);$$

значит $f(\psi)$ — опорная функция для множества F.

Покажем выпуклость этого множества. Пусть вектора x_1 и x_2 содержатся в F. Тогда, согласно определению выпуклости, каждый из векторов $b_{\lambda} = \lambda x_1 + (1 - \lambda)x_2$ (где $\lambda \in [0,1]$) должен также содержаться в F.

$$\langle \lambda x_1 + (1 - \lambda) x_2, \psi \rangle = \lambda \langle x_1, \psi \rangle + (1 - \lambda) \langle x_2, \psi \rangle \stackrel{x_1, x_2 \in F}{\leqslant} \lambda f(\psi) + (1 - \lambda) f(\psi) = f(\psi);$$

$$\frac{1}{\|\psi\|} \langle \lambda x_1 + (1 - \lambda) x_2, \psi \rangle \leqslant \frac{1}{\|\psi\|} f(\psi);$$

$$\left\langle \lambda x_1 + (1 - \lambda) x_2, \frac{\psi}{\|\psi\|} \right\rangle \leqslant f\left(\underbrace{\frac{\psi}{\|\psi\|}}_{\in S}\right).$$

Итак, любой вектор b_{λ} содержится в F, тем самым выпуклость доказана.

Лемма 7. Пусть P — выпуклый компакт, причем $c(P,\psi)=c'(A,\psi_0;\psi)$. Тогда $P=\operatorname{conv} U(A,\psi_0)$.

Доказательство. Фиксируем произвольное $x_0 \in \text{conv U}(a, \psi_0) = \text{conv } A \cap \Gamma_{\psi_0}$. Очевидно, x_0 содержится в Γ_{ψ_0} и conv A.

$$x_0 \in \Gamma_{\psi_0} \Longrightarrow \langle x_0, \psi_0 \rangle = c(A, \psi_0);$$

далее, для любого $x_0 \in \operatorname{conv} A \cap \Gamma_{\psi_0}$ и для любого направления ψ выполняется

$$\langle x_0, \psi \rangle \leqslant c \left(\operatorname{conv} A \cap \Gamma_{\psi_0}, \psi \right) \stackrel{(6)}{=} c \left(\operatorname{conv} \left(A \cap \Gamma_{\psi_0} \right), \psi \right) =$$

$$= c \left(A \cap \Gamma_{\psi_0} \right), \psi \stackrel{A \cap \Gamma_{\psi_0} \subset A}{\leqslant} c \left(A, \psi \right). \quad (7)$$

Используя эти два выражения, получаем:

$$\langle x_0, \psi \rangle = \left\langle x_0, \frac{\lambda \psi}{\lambda} \right\rangle = \left\langle x_0, \frac{\psi_0 + \lambda \psi - \psi_0}{\lambda} \right\rangle = \frac{\langle x_0, \psi_0 + \lambda \psi \rangle - \langle x_0, \psi_0 \rangle}{\lambda} \leqslant \frac{c(A, \psi_0 + \lambda \psi) - c(A, \psi_0)}{\lambda};$$

переходя к пределу при $\lambda \to +0$, получим:

$$\langle x_0, \psi \rangle \leqslant c'(A, \psi_0; \psi) \equiv c(P, \psi) \ \forall \psi \in \mathbf{E}^n.$$

Согласно теореме 2, $x_0 \in \text{conv } P$, но, так как множество P по условию выпуклое, то conv P = P, то есть $x_0 \in P$, поэтому $P \supseteq \text{conv } U(A, \psi_0)$.

Фиксируем теперь произвольное x_0 из P. Покажем, что x_0 содержится в и Γ_{ψ_0} , и conv A.

$$\langle x_{0}, \psi_{0} \rangle \leqslant c(P, \psi_{0}) = c'(A, \psi_{0}; \psi_{0}) = \lim_{\alpha \to +0} \frac{c(A, \psi_{0} + \alpha \psi_{0}) - c(A, \psi_{0})}{\alpha} \stackrel{\text{cb-bo}}{=} {}^{4}$$

$$= \lim_{\alpha \to +0} \frac{(1+\alpha) \cdot c(A, \psi_{0}) - c(A, \psi_{0})}{\alpha} = c(A, \psi_{0});$$

$$\langle x_{0}, -\psi_{0} \rangle \leqslant c(P, -\psi_{0}) = c'(A, \psi_{0}; -\psi_{0}) = \lim_{\alpha \to +0} \frac{c(A, \psi_{0} - \alpha \psi_{0}) - c(A, \psi_{0})}{\alpha} =$$

$$= \lim_{\alpha \to +0} \frac{(1-\alpha) \cdot c(A, \psi_{0}) - c(A, \psi_{0})}{\alpha} = -c(A, \psi_{0});$$

или, что то же самое,

$$\langle x_0, \psi_0 \rangle \geqslant c(A, \psi_0);$$

$$\langle x_0, \psi_0 \rangle \leqslant c(A, \psi_0)$$

$$\langle x_0, -\psi_0 \rangle \geqslant c(A, \psi_0)$$

$$\Rightarrow \langle x_0, \psi_0 \rangle = c(A, \psi_0);$$

а это означает , что $x_0 \in \Gamma_{\psi_0}$. Далее, для любого вектора $\psi \in \mathbf{E}^n$ выполняется

$$\langle x_0, \psi \rangle \leqslant c(P, \psi) = c'(A, \psi_0; \psi) = \lim_{\alpha \to +0} \frac{c(A, \psi_0 + \alpha \psi) - c(A, \psi_0)}{\alpha} \stackrel{\text{CB-BO } 2}{\leqslant}$$

$$\leqslant \lim_{\alpha \to +0} \frac{c(A, \psi_0) + \alpha c(A, \psi) - c(A, \psi_0)}{\alpha} = c(A, \psi);$$

а значит, по теореме 2, $x_0 \in \text{conv } A$. Окончательно, $x_0 \in \text{conv } A \cap \Gamma_{\psi_0}$ и

$$p \subseteq \operatorname{conv} U(A, \psi_0).$$

Двустороннее вложение множеств друг в друга и означает их равенство.

Доказательство теоремы. Выберем в пространстве \mathbf{E}^n базис e_1, \dots, e_n таким образом, чтобы $e_1 = \psi_0$. Построим цепочку множеств $U_i(t)$ согласно следующему правилу:

$$U_{0}(t) = F(t);$$

$$U_{1}(t) = U(U_{0}(t), e_{1});$$

$$\vdots$$

$$U_{k}(t) = U(U_{k-1}(t), e_{k});$$

$$\vdots$$

$$U_{n}(t) = U(U_{n-1}(t), e_{n});$$

Ранее в лемме 6 мы показали, что однородная и выпуклая функция является опорной для некоторого множества. Производная $c'(A, \psi_0; \psi)$ опорной функции обладает этими свойствами. Пусть функция $c'(U_{i-1}(t), e_i; \psi)$ является опорной к некоторому множеству P, то есть $c'(U_{i-1}(t), e_i; \psi) = c(P, \psi)$. Тогда, по лемме, 7

$$P = \operatorname{conv} U(U_{i-1}, \psi) = \operatorname{conv} U_i.$$

Из того, как мы ввели множества U_k $(k=1,2,\ldots,n)$ следует, что

$$c'(U_{i-1}(t), e_i; \psi) = c (conv U_i, \psi) = c (U_i, \psi).$$

По определению производной:

$$c'(U_{i-1}(t), e_i; \psi) = \lim_{\alpha \to 0} \frac{c(U_{i-1}(t), e_i + \alpha \psi) - c(U_{i-1}(t), e_i)}{\alpha} = c(U_i, \psi).$$

Каждая опорная функция с (U_{i-1}, ψ) измерима, значит и предел при $\alpha \to 0$ представляет собой измеримую функцию, равную с (U_i, ψ) . Поэтому при $i = 1, 2, \ldots, n$ множества conv $U_i(t)$, (а следовательно и U_i) будут измеримыми.

Множества $U_n(t)$ вложены друг в друга:

$$U_n(t) \subseteq U_{n-1} \subseteq \ldots \subseteq U_0(t) \equiv F(t), \tag{8}$$

потому как опорное множество U (A, ψ_0) является подмножеством множества A для любых A и ψ_0 . Кроме того, размерность каждого $U_i(t)$ не превосходит n-i:

$$\dim U_1(t) \leq n-1;$$

$$\vdots$$

$$\dim U_i(t) \leq n-i;$$

$$\vdots$$

$$\dim U_n(t) \leq 0 \Longrightarrow U_n(t) = \{f(t)\};$$

Из вложенности (8) следует, что $f(t) \subset F(t)$ при любом t, а так как каждое из $U_i(t)$ измеримо, то и $f(t) = U_n(t)$ также измеримо. f(t) является измеримой однозначной ветвью. Теорема доказана.

При доказательстве леммы 7 мы пользовались равенством

$$c(A \cap \Gamma_{\psi_0}, \psi) = c(\operatorname{conv} A \cap \Gamma_{\psi_0}, \psi) \ \forall \psi \neq 0;$$

которое вытекает из равенства (5). Обоснуем этот переход более строго. Ранее в теореме (1) было показано, что для минимальной выпуклой оболочки множества A справедливо представление

$$\operatorname{conv} A = \bigcup_{m \geqslant 0} A_m$$
, где $A_0 = A$, $A_{m+1} = \bigcup_{\lambda \in [0,1]} \{\lambda A_m + (1-\lambda)A_m\}$;

поэтому

$$c\left(\operatorname{conv} A \cap \Gamma_{\psi_0}, \psi\right) = c\left(\left(\bigcup_{m \geqslant 0} A_m\right) \bigcap \Gamma_{\psi_0}, \psi\right) = c\left(\bigcap_{m \geqslant 0} \{A_m \cap \Gamma_{\psi_0}\}, \psi\right) \stackrel{\text{CB-BO } 6}{=}$$

$$= \sup_{m \geqslant 0} c\left(A_m \cap \Gamma_{\psi_0}, \psi\right)$$

$$(9)$$

Покажем, что для при любом m выполняется равенство

$$c(A_m \cap \Gamma_{\psi_0}, \psi) = c(A \cap \Gamma_{\psi_0}, \psi). \tag{10}$$

При m=0 выражение (10) обращается в тождество, так как $A_0=A$. Пусть утверждение верно при некотором k, тогда

$$c(A_{k+1} \cap \Gamma_{\psi_0}, \psi) = c\left(\bigcup_{\lambda \in [0,1]} \{\lambda A_k + (1-\lambda)A_k\} \cap \Gamma_{\psi_0}, \psi\right) =$$

$$= c\left(\bigcup_{\lambda \in [0,1]} \{\{\lambda A_k + (1-\lambda)A_k\} \cap \Gamma_{\psi_0}\}, \psi\right) =$$

$$= \sup_{\lambda \in [0,1]} c(\{\lambda A_k + (1-\lambda)A_k\} \cap \Gamma_{\psi_0}, \psi); \tag{11}$$

Теперь покажем равенство множеств:

$$\{\lambda A + (1 - \lambda)A\} \cap \Gamma_{\psi_0} = \lambda A \cap \Gamma_{\psi_0} + (1 - \lambda)A \cap \Gamma_{\psi_0}.$$

Возьмем b из множества $\{\lambda A + (1-\lambda)A\} \cap \Gamma_{\psi_0}$. Так как $b \in \Gamma_{\psi_0}$, то

$$\langle b, \psi_0 \rangle = c(A, \psi_0);$$

а из того, что $b \in \lambda A + (1 - \lambda)A$ следует:

$$b = \lambda a_1 + (1 - \lambda)a_2, \quad \text{где } a_1, a_2 \in A;$$

$$\langle b, \psi_0 \rangle = \lambda \langle a_1, \psi_0 \rangle + (1 - \lambda) \langle a_2, \psi_0 \rangle = c(A, \psi_0); \tag{12}$$

(последнее равенство — в силу того, что $b \in \Gamma_{\psi_0}$). Такое возможно только в том случае, если

$$\langle a_1, \psi_0 \rangle = c(A, \psi_0), \ \langle a_2, \psi_0 \rangle = c(A, \psi_0).$$

Действительно, если хотя бы одно из скалярных произведений $\langle a_i, \psi_0 \rangle$ (i=1,2) меньше с (A, ψ_0) (случай $\langle a_i, \psi_0 \rangle >$ с (A, ψ_0) вообще исключен), то

$$\langle b, \psi_0 \rangle < c(A, \psi_0),$$

а это невозможно в силу (12). Из первого равенства следует, что $a_1 \in \Gamma_{\psi_0}$, а из второго $-a_2 \in \Gamma_{\psi_0}$, а так как $a_1, a_2 \in A$, то $a_1 \in A \cap \Gamma_{\psi_0}$, $a_2 \in A \cap \Gamma_{\psi_0}$ и

$$\{\lambda A + (1-\lambda)A\} \cap \Gamma_{\psi_0} \subseteq \lambda A \cap \Gamma_{\psi_0} + (1-\lambda)A \cap \Gamma_{\psi_0}.$$

Пусть теперь $b \in \lambda A \cap \Gamma_{\psi_0} + (1-\lambda)A \cap \Gamma_{\psi_0}$. Это означает, что его можно представить как

$$b = \lambda a_1 + (1 - \lambda)a_2$$
, где $a_1, a_2 \in A \cap \Gamma_{\psi_0}$.

Сразу видно, что $b \in \lambda A + (1 - \lambda)A$ (так как $a_1, a_2 \in A$). Кроме того

$$\langle b, \psi_0 \rangle = \lambda \langle a_1, \psi_0 \rangle + (1 - \lambda) \langle a_2, \psi_0 \rangle;$$

$$a_1, a_2 \in \Gamma_{\psi_0} \Longrightarrow \langle a_1, \psi_0 \rangle = \langle a_2, \psi_0 \rangle = c(A, \psi_0) \Longrightarrow \langle b, \psi_0 \rangle = c(A, \psi_0);$$

значит $b \in \Gamma_{\psi_0}$, то есть

$$\{\lambda A + (1-\lambda)A\} \cap \Gamma_{\psi_0} \supseteq \lambda A \cap \Gamma_{\psi_0} + (1-\lambda)A \cap \Gamma_{\psi_0}.$$

Таким образом, равенство множеств доказано.

Замечание. В общем случае равенство

$$(A+B) \cap C = A \cap C + B \cap C$$

неверно. Для примера возьмем $A = B = C = S_1(0)$. Тогда

$$(A+B) \cap C = S_2(0) \cap S_1(0) = S_1(0);$$

 $A \cap C + B \cap C = S_1(0) + S_1(0) = S_2(0).$

Теорема 4 (Ляпунова). Пусть множество G определяется следующим образом:

$$G = \int_{t_0}^{t_1} F(t) dt = \left\{ \int_{t_0}^{t_1} f(t) dt, \ f(t) \in F(t) \ \forall t \in I \right\},$$

где $I = [t_0, t_1]; u$ пусть задано измеримое отображение

$$F(t): I \longrightarrow \Omega(\mathbf{E}^n),$$

причем $|F(t)| \le k(t)$, где k(t) — некоторая суммируемая на I функция. Тогда:

- 1) $G \neq \emptyset$;
- 2) Множество G ограничено, то есть $\exists R > 0 : G \subseteq S_R(0);$
- 3) Множество G замкнуто;
- 4) Множество G выпукло (то есть G выпуклый компакт).

Доказательство. 1) Согласно условию, F(t) измеримо, значит у этого отображения существует измеримая однозначная ветвь f(t), причем

$$||f(t)|| \leqslant |F(t)| \leqslant k(t).$$

Функция ||f(t)|| не превосходит суммируемой функции k(t), значит она тоже суммируема, то есть существует интеграл

$$\int_{t_0}^{t_1} f(t) \, \mathrm{d}t,$$

поэтому множество G непусто.

2) Из определения множества G следует, что для любого g из G существует представление

$$g = \int_{t_0}^{t_1} f(t) \, \mathrm{d}t,$$

где f(t) — некоторая однозначная ветвь отображения F(t). Поэтому

$$||g|| \le \int_{t_0}^{t_1} ||f(t)|| dt \le \int_{t_0}^{t_1} |F(t)| dt = \int_{t_0}^{t_1} k(t) dt \equiv R,$$

откуда $G \subseteq S_R(0)$.

Свойства 3) и 4) примем без доказательства.

Пример 18. Пусть имеется отображение $F(t): I \longrightarrow \Omega(\mathbb{R}^1)$, где I = [0,1], задаваемое формулой $F(t) = t \cdot \{-1,1\}$. У этого отображения на отрезке I существуют две непрерывные ветви: f(t) = t и f(t) = -t. Ясно, что минимальное и максимальное значение элементов из G будет достигаться при интегрировании по непрерывным ветвям:

$$g_{max} = \max_{g \in G} g = \int_0^1 t \, dt = \frac{1}{2};$$

 $g_{min} = \min_{g \in G} g = \int_0^1 -t \, dt = -\frac{1}{2};$

поэтому $G \subset [-\frac{1}{2}, \frac{1}{2}]$. В G содержатся также элементы, получаемые при интегрировании семейства однозначных ветвей

$$f_{\alpha}(t) = \begin{cases} t, & 0 \leqslant t \leqslant \alpha; \\ -t, & \alpha < t \leqslant 1. \end{cases}$$

$$I_{\alpha} = \int_{0}^{1} f_{\alpha}(t) dt = \int_{0}^{\alpha} t dt + \int_{\alpha}^{1} -t dt = \frac{\alpha^{2}}{2} - \frac{1}{2} + \frac{\alpha^{2}}{2} = \alpha^{2} - \frac{1}{2},$$

где $\alpha \in [0,1]$. Таким образом, интеграл I_{α} принимает все значения из отрезка $[-\frac{1}{2},\frac{1}{2}]$. Конечно при помощи семейства g_{α} не перебираются все возможные однозначные ветви, но для любой однозначной ветви h(t) значение $\int_0^1 h(t) \, \mathrm{d}t$ будет лежать между g_{min} и g_{max} , то есть в отрезке $[-\frac{1}{2},\frac{1}{2}]$. Поэтому $G=[-\frac{1}{2},\frac{1}{2}]$.

Теорема 5 (о внесении знака опорной функции под знак интеграла). Пусть задано измеримое отображение $F(t): I \longrightarrow \Omega(\mathbf{E}^n)$, причем $|F(t)| \leqslant k(t)$, где функция k(t) интегрируема по Лебегу на I. Тогда для любого ψ из \mathbf{E}^n выполняется следующее равенство:

$$c\left(\int_{t_0}^{t_1} F(t) dt, \psi\right) = \int_{t_0}^{t_1} c\left(F(t), \psi\right) dt.$$

Доказательство. Из определения опорной функции следует, что

$$|c(F(t), \psi)| \leq |F(t)| \cdot ||\psi|| \leq k(t) \cdot ||\psi|| = k_1(t).$$

Домножение на константу функции k(t) не влияет на интегрируемость, поэтому функция $k_1(t)$ также будет интегрируема по Лебегу, а значит интеграл

$$\int_{t_0}^{t_1} c(F(t), \psi) dt$$

существует.

Докажем теперь равенство. Обозначим $\int_{t_0}^{t_1} F(t) dt = G$. Возьмем произвольный элемент g из G. Для него справедливо представление

$$g = \int_{t_0}^{t_1} f(t) \, \mathrm{d}t,$$

где f(t) — некоторая однозначная ветвь отображения F(t). Воспользовавшись тем, что знак скалярного произведения и знак интеграла перестановочны, мы можем написать:

$$\langle g, \psi \rangle = \left(\int_{t_0}^{t_1} f(t) \, \mathrm{d}t, \psi \right) = \int_{t_0}^{t_1} \langle f(t), \psi \rangle \, \mathrm{d}t \leqslant \int_{t_0}^{t_1} \mathrm{c}\left(F(t), \psi \right) \, \mathrm{d}t.$$

Поскольку данное неравенство выполняется для любых g (в том числе и для тех, на которых достигается максимум произведения (g, ψ)), то

$$c\left(\int_{t_0}^{t_1} F(t) dt, \psi\right) \leqslant \int_{t_0}^{t_1} c\left(F(t), \psi\right) dt. \tag{13}$$

Докажем теперь неравенство в обратную сторону.

Так как отображение F(t) измеримо, то, по теореме о существовании измеримой ветви, для любого $\psi \in \mathbf{E}^n$ множество ветвей, лежащих в опорном множестве $U(F(t), \psi)$, непусто (хотя бы одна такая ветвь существует), причем для любой такой ветви $\bar{f}(t)$ выполняется

$$\langle \bar{f}(t), \psi \rangle = c(F(t), \psi).$$

Из условий $|F(t)| \leqslant k(t)$ и $\bar{f}(t) \in F(t)$ следует, что f(t) интегрируема по Лебегу, и значит

$$\int_{t_0}^{t_1} c(F(t), \psi) dt = \int_{t_0}^{t_1} \langle \bar{f}(t), \psi \rangle dt = \left\langle \underbrace{\int_{t_0}^{t_1} \bar{f}(t) dt}_{=\bar{g}}, \psi \right\rangle = \langle \bar{g}, \psi \rangle \stackrel{\bar{g} \in G}{\leqslant} c(G, \psi).$$

Таким образом

$$\int_{t_0}^{t_1} c(F(t), \psi) dt \leqslant c \left(\int_{t_0}^{t_1} F(t) dt, \psi \right)$$
(14)

Сопоставляя неравенства (13) и (14), получим

$$\int_{t_0}^{t_1} c(F(t), \psi) dt = c \left(\int_{t_0}^{t_1} F(t) dt, \psi \right);$$

то есть утверждение теоремы доказано.

Пример 19. Пусть отображение $F(t) = t \cdot \{-1, 1\}$ задано на отрезке I = [0, 1]. Как было показано в примере 18,

$$G = \int_0^1 F(t) dt = \left[-\frac{1}{2}, \frac{1}{2} \right]$$

$$c(G, \psi) = \int_0^1 c(F(t), \psi) dt = \int_0^1 t \|\psi\| dt = \|\psi\| \int_0^1 t dt = \frac{1}{2} \|\psi\|,$$

что верно для любого ψ из \mathbf{E}^n . Ту же опорную функцию имеет шар $S_{\frac{1}{2}}(0)$, а так как, согласно теореме Ляпунова, множество G выпукло, то равенство опорных функций означает равенство самих множеств: $G=S_{\frac{1}{2}}(0)=[-\frac{1}{2},\frac{1}{2}]$ (здесь $S_{\frac{1}{2}}(0)\subset\mathbb{R}$).

Пример 20. Пусть отображение $F(t): I \longrightarrow \Omega(\mathbb{R}^2)$, равное $F(t) = A(t) \cdot \{-v, v\}$, где

$$A(t) = \begin{pmatrix} \sin t & t^3 \\ \cos t & t^8 \end{pmatrix}, \ v = \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

задано на отрезке $[-\pi,\pi]$. Построим множество G, для чего сначала найдем его опорную функцию:

$$c(G, \psi) = c\left(\int_{-\pi}^{\pi} F(t) dt, \psi\right)^{\text{теорема 5}} \int_{-\pi}^{\pi} c(F(t), \psi) dt =$$

$$= \int_{-\pi}^{\pi} c\left(\left\{A(t)v, -A(t)v\right\}, \psi\right) dt \stackrel{\text{cb-bo 4}}{=} \int_{-\pi}^{\pi} \max\left(\left\langle A(t)v, \psi\right\rangle, -\left\langle A(t)v, \psi\right\rangle\right) dt =$$

$$= \int_{-\pi}^{\pi} \left|\left\langle A(t)v, \psi\right\rangle \right| dt == \int_{-\pi}^{\pi} \left|\left\langle \left(\frac{\sin t}{\cos t}\right), \left(\frac{\psi_{1}}{\psi_{2}}\right)\right\rangle \right| =$$

$$= \int_{-\pi}^{\pi} \left|\psi_{1} \sin t + \psi_{2} \cos t\right| dt, \tag{15}$$

где ψ_1 и ψ_2 — компоненты вектора $\psi \in \mathbf{E}^2$. Очевидно, любой вектор $\psi \in \mathbf{E}^2$ можно представить в виде

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \|\psi\| \cdot \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix},$$
где $\alpha \in [0, 2\pi),$

что следует из представления вектора в полярных координатах. Тогда (15) продолжится следующим образом:

$$\|\psi\| \int_{-\pi}^{\pi} |\cos \alpha \sin t + \sin \alpha \cos t| dt = \|\psi\| \int_{-\pi}^{\pi} |\sin(t+\alpha)| dt = 4\|\psi\| = c(S_4(0), \psi).$$

Так как множество G выпукло (по теореме Ляпунова), то $G = S_4(0)$.

Пример 21. Пусть имеется отображение F(t) = F, то есть его значение есть некоторое фиксированное множество при любом t из отрезка $[t_0, t_1]$. Тогда

$$c(G, \psi) = \int_{t_0}^{t_1} c(F(t), \psi) dt = \int_{t_0}^{t_1} c(F, \psi) dt = (t_1 - t_0) c(F, \psi) \stackrel{\text{CB-BO}}{=} {}^{7}$$
$$= (t_1 - t_0) c(\text{conv } F, \psi) \stackrel{\text{CB-BO}}{=} {}^{4} c((t_1 - t_0) \text{conv } F, \psi).$$

To есть $G = (t_1 - t_0) \operatorname{conv} F$.

Теорема 6. Пусть $I = [t_0, t_1]$, отображение $F(t) : I \longrightarrow \Omega(\mathbf{E}^n)$ измеримо и $|F(t)| \le k(t)$, где k(t) — интегрируемая по Лебегу функция. Тогда функция

$$G(\tau) = \int_{t_0}^{\tau} F(t) \, \mathrm{d}t$$

непрерывна по τ .

Доказательство. В силу теоремы о внесении знака опорной функции под знак интеграла для любого ψ из пространства \mathbf{E}^n выполняется равенство

$$c(G(\tau), \psi) = c\left(\int_{t_0}^{\tau} F(t) dt, \psi\right) = \int_{t_0}^{\tau} c(F(t), \psi) dt.$$

Из свойств интеграла Лебега вытекает, что функция $c(G(\tau), \psi)$ непрерывна по τ при любом фиксированном $\psi \in \mathbf{E}^n$. По лемме 3 из непрерывности опорной функции следует непрерывность отображения $\operatorname{conv} G(\tau)$, а по теореме Ляпунова, множество $G(\tau)$ при любом τ выпукло, значит $\operatorname{conv} G(\tau) = G(\tau)$.

Теорема доказана.

3 Принцип максимума Понтрягина

Экспоненциал матрицы

Из математического анализа известно разложения экспоненты в ряд Тейлора:

$$e^{a} = 1 + \frac{a}{1!} + \frac{a^{2}}{2!} + \dots + \frac{a^{n}}{n!} + \dots$$

По аналогии с этим разложением вводится понятие экспоненциала матрицы.

Определение 19. Пусть дана произвольная матриц A размера $n \times n$. Экспоненциалом матрицы A называется матричный ряд (E — единичная матрица)

$$e^{A} = E + \frac{1}{1!}A + \frac{1}{2!}A^{2} + \dots + \frac{1}{n!}A^{n} + \dots$$
 (16)

Покажем что этот ряд сходится абсолютно для любой матрицы A. Пусть

$$A = \{a_{ij}\}_{i,j=1}^n, \quad e^A = \{e_{ij}\}_{i,j=1}^n,$$

a — максимальный по модулю элемент матрицы A:

$$a = \max_{i,j=\overline{1,n}} |a_{ij}|.$$

Обозначим через $(A)_{ij}$ элемент a_{ij} матрицы A, тогда для любых i и j

$$|(A)_{ij}| \leqslant a, \ |(A^2)_{ij}| \leqslant na^2, \ |(A^3)_{ij}| \leqslant n^2a^3, \dots, \ |(A^n)_{ij}| \leqslant n^{k-1}a^k = \frac{(na)^k}{n};$$

$$|e_{ij}| \le 1 + a + \frac{na^2}{2!} + \frac{n^2a^3}{3!} + \dots + \frac{n^k - 1a^k}{k!} + \dots = 1 + a + \frac{1}{n} \left(\frac{(na)^2}{2!} + \frac{(na)^3}{3!} + \dots + \frac{(na)^k}{k!} + \dots \right) = 1 + a + \frac{1}{n} \left(1 + na + \frac{(na)^2}{2!} + \frac{(na)^3}{3!} + \dots + \frac{(na)^k}{k!} + \dots - 1 - na \right) = 1 + na + \frac{1}{n} (e^{na} - 1 - na).$$

Все элементы матрицы A (а значит и число a) конечны, ее размер n — тоже. Итак, каждый элемент матрицы e^A не превосходит константы, следовательно матричный ряд (16) сходится.

Рассмотрим ряд, зависящий от вещественного параметра t:

$$e^{tA} = E + \frac{t}{1!}A + \frac{t^2}{2!}A^2 + \dots + \frac{t^n}{n!}A^n + \dots$$
 (17)

Сделав замену tA = B, и учитывая, что $t^n A^n = (tA)^n = B^n$, мы можем повторить доказательство сходимости ряда при любом t. Значит e^{tA} есть абсолютно сходящийся ряд с радиусом сходимости по t равным ∞ .

Докажем, что выполняется равенство $e^{tA} \cdot e^{sA} = e^{(t+s)A}$:

$$e^{tA} \cdot e^{sA} = \left(E + tA + \frac{t^2}{2!}A^2 + \frac{t^3}{3!}A^3 + \cdots\right) \left(E + sA + \frac{s^2}{2!}A^2 + \frac{s^3}{3!}A^3 + \cdots\right) =$$

$$= E + tA + sA + \frac{t^2}{2!}A^2 + tsA^2 + \frac{s^2}{2!}A^2 + \cdots =$$

$$= E + (t+s)A + \frac{1}{2!}(t^2 + 2ts + s^2)A^2 + \cdots = e^{(t+s)A}.$$

Из доказанного свойства следует, что если e^A — невырожденная матрица, то e^{-A} — ее обратная матрица. Действительно, по доказанному

$$e^A \cdot e^{-A} = e^{(1+(-1))A} = e^O = E,$$

(здесь O — нулевая матрица). Аналогично, матрица e^{-tA} будет обратной к матрице e^{tA} при любом вещественном t.

Замечание. По аналогии со свойствами экспоненты, известными из математического анализа, можно предположить, что

$$e^A \cdot e^B = e^{A+B},$$

где A и B — различные матрицы, однако в общем случае это не так. Но можно показать, что данное равенство выполняется тогда и только тогда, когда AB = BA. Действительно,

$$(A+B)^m = \sum_{k=0}^m {m \choose k} A^k B^{m-k} = \sum_{\substack{k,l \ge 0 \\ k+l=m}} \frac{m!}{k! \ l!} A^k B^l,$$

поэтому в произведении

$$\left(E + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \cdots\right) \left(E + B + \frac{1}{2!}B^2 + \frac{1}{3!}B^3 + \cdots\right) =$$

$$= E + AB + \frac{1}{2!}A^2 + \frac{1}{2!}B^2 + \cdots$$

собрать соответствующие слагаемые вида A^kB^l для каждого $(A+B)^l$ удастся только при выполнении условия AB=BA.

Ряд e^{tA} можно дифференцировать сколько угодное число раз, причем

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{tA} = Ae^{tA} = e^{tA}A. \tag{18}$$

Продифференцировав ряд (17), получим:

$$(e^{tA})' = E' + \left(\frac{t}{1!}A\right)' + \left(\frac{t^2}{2!}A^2\right)' + \dots + \left(\frac{t^n}{n!}A^n\right)' + \dots =$$

$$= O + \left(\frac{t}{1!}\right)'A + \left(\frac{t^2}{2!}\right)'A^2 + \dots + \left(\frac{t^n}{n!}\right)'A^n + \dots =$$

$$= A + \frac{t}{1!}A^2 + \frac{t^2}{2!}A^3 + \dots + \frac{t^{n-1}}{(n-1)!}A^n + \dots$$

Далее, воспользовавшись дистрибутивностью умножения матриц, мы можем вынести A за скобку справа или слева, после чего получим формулу (18).

Пример 22. Определим экспоненциал матрицы A при

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

$$e^{tA} = E + t \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \dots + \frac{t^n}{n!} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}^n + \dots = E$$

Пример 23. Пусть

$$A = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right).$$

Тогда

$$A^{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, A^{3} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \dots,$$

значит

$$e^{tA} = E + tA = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}.$$

Из определения экспоненциала вытекает также, что $e^{A^*} = (e^A)^*$, где символом * обозначена операция транспонирования.

Пример 24. Пусть

$$A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right).$$

Тогда, очевидно, $-A = A^*$.

$$A^{2} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -E;$$

$$A^{3} = A^{2} \cdot A = -E \cdot A = -A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix};$$

$$A^{4} = A^{2} \cdot A^{2} = (-E)(-E) = E;$$

$$A^{5} = A, \quad A^{6} = -E, \quad A^{7} = -A, \quad A^{8} = E \quad \dots$$

Значит экспоненциал будет иметь вид:

$$e^{tA} = E + t \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + \frac{t^2}{2!} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} + \frac{t^3}{3!} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + \frac{t^4}{4!} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \cdots$$

Посчитаем каждый элемент матрицы e^{tA} по отдельности:

$$e_{11} = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \frac{t^6}{6!} + \frac{t^8}{8!} + \cdots$$

Это тейлоровское разложение функции $\cos t$, то есть $e_{11}=\cos t$. Аналогично:

$$e_{12} = t - \frac{t^3}{3!} + \frac{t^5}{5!} - \frac{t^7}{7!} + \dots = \sin t;$$

$$e_{21} = -t + \frac{t^3}{3!} - \frac{t^5}{5!} + \frac{t^7}{7!} + \dots = -\sin t;$$

$$e_{22} = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \frac{t^6}{6!} + \frac{t^8}{8!} + \dots = \cos t.$$

Окончательное выражение для экспоненциала:

$$e^{tA} = e^{t\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & -\cos t \end{pmatrix}$$

Отметим важное свойство экспоненциала. Пусть для матричной функции x(t) задано матричное дифференциальное уравнение:

$$\begin{cases} \dot{x} = Ax \\ x(0) = E \end{cases}$$
 (19)

тогда $x(t) = e^{tA}$ является решением этого уравнения. Действительно, x(t) удовлетворяет начальному условию $x(0) = e^O = E$, а производная x(t) равна

$$\dot{x}(t) = (e^{tA})' = Ae^{tA} = Ax(t).$$

Подставив выражение Ax(t) в уравнение и домножив обе части уравнения слева на A^{-1} , получим тождество.

Экспоненциал можно найти, вычисляя каждый столбец по отдельности. Пусть $E=\{e\}_{i,j=1}^n$. Обозначим i - ый столбец единичной матрицы через e_i :

$$e_i = \begin{pmatrix} e_{1\,i} \\ e_{2\,i} \\ \vdots \\ e_{n\,i} \end{pmatrix};$$

Тогда из условия

$$\begin{cases} \dot{x} = Ax \\ x(0) = e_i \end{cases}, \quad i = 1, 2, \dots, n$$

(здесь x(t) — уже векторная функция) мы можем для каждого $i=1,2,\ldots,n$ найти решение x(t), которое будет i-ым столбцом экспоненциала и таким образом последовательно найти все столбцы экспоненциала.

Пример 25. Пусть матрица уравнения (19) имеет вид:

$$A = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right).$$

Тогда уравнение (19) можно переписать в виде системы

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = 0 \end{cases},$$

решая которую, находим: $x_1 = c_2 t + c_1$, $x_2 = c_2$. Подставляя в начальное условие e_1 и e_2 , находим константы:

$$x(0) = \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Longrightarrow \begin{array}{c} c_2 = 0 \\ c_1 = 1 \end{array} \Longrightarrow x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix};$$

x(t) — это первый столбец экспоненциала.

$$x(0) = \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = e_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Longrightarrow \begin{array}{c} c_2 = 1 \\ c_1 = 0 \end{array} \Longrightarrow x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} t \\ 1 \end{pmatrix};$$

здесь x(t) — второй столбец экспоненциала. Таким образом, экспоненциал будет иметь вид:

$$e^{tA} = \left(\begin{array}{cc} 1 & t \\ 0 & 1 \end{array}\right).$$

Заметим, что его формула совпадает с найденной в примере 23.

Определение 20. Функция x(t) называется абсолютно непрерывной на отрезке $[t_0, t_1]$, если x(t) почти всюду дифференцируема, ее производная $\dot{x}(t)$ интегрируема по Лебегу на отрезке $[t_0, t_1]$ и для любого t из этого отрезка выполняется равенство

$$x(t) = x(t_0) + \int_{t_0}^t \dot{x}(s) \, ds;$$

(здесь интеграл рассматривается в смысле Лебега).

В классе абсолютно непрерывных функций можно распространить теорию обыкновенных дифференциальных уравнений.

Пусть дана задача Коши:

$$\begin{cases} \dot{x} = Ax + u(t) \\ x(t_0) = x_0 \end{cases} , \tag{20}$$

тогда формула

$$x(t) = e^{(t-t_0)A}x_0 + \int_{t_0}^t e^{(t-s)A}u(s) ds = e^{(t-t_0)A} \left(x_0 + \int_{t_0}^t e^{(t_0-s)A}u(s) ds\right)$$
(21)

называется формулой Коши.

Теорема 7 (Каратеодори). Рассмотрим задачу Коши (20), где U(t) интегрируема по Лебегу на отрезке $[t_0, t_1]$. Тогда решение задачи Коши существует и единственно на этом отрезке и дается формулой Коши (21), в которой интеграл берется по Лебегу.

Доказательство. Напомним формулу дифференцирования под знаком интеграла:

$$\left(\int_{a(t)}^{b(t)} f(t,y) \, \mathrm{d}y\right)_{t}' = b'(t) \cdot f(t,b(t)) - a'(t) \cdot f(t,a(t)) + \int_{a(t)}^{b(t)} \frac{\mathrm{d}}{\mathrm{d}t} f(t,y) \, \mathrm{d}y.$$

Из формулы Коши (21), используя формулу дифференцирования интеграла, найдем $\dot{x}(t)$:

$$\dot{x}(t) = \left(e^{(t-t_0)A}x_0 + e^{(t-t_0)A}\int_{t_0}^t e^{(t_0-s)A}u(s)\,\mathrm{d}s\right)_t' =$$

$$= Ae^{(t-t_0)A}x_0 + e^{(t-t_0)A}e^{(t_0-t)A}u(t) + Ae^{(t-t_0)A}\int_{t_0}^t e^{(t_0-s)A}u(s)\,\mathrm{d}s =$$

$$= A\left[e^{(t-t_0)A}x_0 + e^{(t-t_0)A}\int_{t_0}^t e^{(t_0-s)A}u(s)\,\mathrm{d}s\right] + u(t) = Ax(t) + u(t)$$

для почти всех t из отрезка $[t_0, t_1]$. Таким образом существование решения доказано. Докажем единственность. Пусть x(t) и y(t) — два решения задачи Коши (20). Обозначим через z(t) разность этих решений: z(t) = x(t) - y(t), тогда

$$\begin{cases} \dot{z} = \dot{x} - \dot{y} = Ax - Ay = A(x - y) = Az, \\ z(t_0) = x(t_0) - y(t_0) = x_0 - x_0 = 0. \end{cases}$$
 (22)

Это уравнение имеет только одно решение в классе абсолютно непрерывных функций. Обозначим $\varphi(t) = \|z(t)\|^2 \cdot e^{-2(t-t_0)} \|A\|$. Покажем, что $\varphi(t) = 0$ почти всюду на $[t_0, t_1]$.

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\|z(t)\|^2 \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left\langle z(t), z(t) \right\rangle = 2 \left\langle \dot{z}(t), z(t) \right\rangle \stackrel{(22)}{=} 2 \left\langle Az, z \right\rangle \leqslant 2 \|A\| \cdot \|z\|^2 \tag{23}$$

По формуле производной сложной функции для любого t верно:

$$\dot{\varphi}(t) = \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\|z(t)\|^2 \cdot e^{-2(t-t_0)} \|A\| \right) =$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\|z(t)\|^2 \right) \cdot e^{-2(t-t_0)\|A\|} - 2\|A\| \cdot e^{-2(t-t_0)\|A\|} \cdot \|z(t)\|^2 \leqslant$$

$$\leq 2\|A\|\cdot\|z(t)\|^2e^{-2(t-t_0)\|A\|} - 2\|A\|\cdot\|z(t)\|^2e^{-2(t-t_0)\|A\|} = 0;$$

поэтому

$$\varphi(t) = \underbrace{\varphi(t_0)}_{=0} + \int_{t_0}^t \underbrace{\dot{\varphi}(s) \, \mathrm{d}s}_{\leq 0} \leqslant 0$$

В то же время

$$\varphi(t) = \underbrace{\|z(t)\|^2}_{\geqslant 0} \underbrace{e^{-2(t-t_0)\|A\|}}_{\geqslant 0} \geqslant 0.$$

Это значит, что $\varphi(t) \equiv 0$ при почти всех t из $[t_0, t_1]$, а отсюда, в свою очередь, следует, что ||z(t)|| = 0 (так как $e^{-2(t-t_0)||A||}$ не обращается в ноль), а значит и $z(t) \equiv 0$ почти всюду на отрезке $[t_0, t_1]$. Учитывая, что z(t) = x(t) - y(t), получаем: x(t) = y(t), то есть любые два решения задачи Коши совпадают.

Замечание. Начальное условие можно задать и на правом конце отрезка:

$$\begin{cases} \dot{x} = Ax + u(t), \\ x(t_1) = x_1; \end{cases}$$

можно совершенно аналогично показать, что в этом случае решение будет иметь вид:

$$x(t) = e^{(t-t_1)A}x_1 + \int_{t_1}^t e^{(t-s)A}u(s) ds.$$

Пример 26.

$$\begin{cases} \dot{x} = u(t), & x \in \mathbf{E}^2, u \in \mathbf{E}^2 \\ x(t_0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, & 0 \leqslant t \leqslant 1, \\ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, & 1 < t \leqslant 2. \end{cases}$$

Очевидно, матрица A — нулевая, поэтому $e^{tA} = E$ (см. пример 22). Согласно формуле Коши решение имеет вид:

$$x(t) = Ex_0 + \int_{t_0}^t e^{(t-s)O}u(s) \, \mathrm{d}s = x_0 + \int_{t_0}^t u(s) \, \mathrm{d}s =$$
$$= \begin{pmatrix} 1\\1 \end{pmatrix} + \int_{t_0}^t \begin{pmatrix} 1\\1 \end{pmatrix} \, \mathrm{d}s = \begin{pmatrix} 1+t\\1+t \end{pmatrix}, \text{ при } 0 \leqslant t \leqslant 1.$$

Чтобы найти решение на второй части отрезка, можно теперь $x(1) = x_1$ рассматривать как начальное условие:

$$x(1) = {2 \choose 2}; \quad x(t) = x_2 + \int_{t_0}^t u(s) \, ds = {2 \choose 2} + \int_{t_0}^t {1 \choose -1} \, ds = {1+t \choose 3-t}.$$

Заметим, что в точке $\binom{2}{2}$, то есть при t=1, производной не существует (производная кусочно-непрерывна).

+Рисунок

Множества достижимости и управляемости

Рассмотрим основную задачу оптимального управления:

$$\begin{cases} \dot{x} = Ax + u, \\ x(t_0) \in M_0, x(t_1) \in M_1 \end{cases}$$

Пусть множество U всевозможных значений, которые принимает управление u(t), является компактом для почти всех t. Тогда, очевидно, $||u(t)|| \le |U|$ почти для всех t. Значения функции x(t) можно считать координатами некоторой точки, а t можно рассматривать как временную координату. Задача состоит в том, чтобы перевести точку $x(t_0)$ в точку $x(t_1)$ и при этом свести затрачиваемое время $t_1 - t_0$ к минимуму.

Определение 21. Множество, определяемое следующим образом:

$$X(t) = \left\{ x \in \mathbf{E}^n : \ x = e^{(t-t_0)A} x_0 + \int_{t_0}^t e^{(t-s)A} u(s) \, \mathrm{d}s, \ x_0 \in M_0, u(\cdot) \in D_U \right\} =$$

$$\bigcup_{\substack{x_0 \in M_0 \\ u(\cdot) \in D_U}} \left\{ e^{(t-t_0)A} x_0 + \int_{t_0}^t e^{(t-s)A} u(s) \, \mathrm{d}s \right\},$$

называется множеством достижимости.

Через D_U обозначен класс допустимых управлений, то есть множество функций, откуда могут браться функции u, а через $u(\cdot) \in D_U$ — принадлежность к этому классу. Нетрудно видеть, что X(t) — это множество решений задачи Коши по всевозможным начальным данным и допустимым функциям управления.

Пусть $x(t_0) = M_0$, то есть множество M_0 состоит из одной точки (начальное условие определено однозначно). Сформулируем некоторые предположения при которых наша задача имеет смысл.

- $x(t_0) \cap M_1 = \emptyset$, исходная точка изначально не находится в том множестве, куда ее надо перевести.
- Существует такое положительное ε , что $x(t) \cap M_1 = \emptyset$ при $t \in [t_0, t_0 + \varepsilon]$. Иначе говоря, точка x(t) не попадает в множество M_1 при малейшем изменении t.

• Если t_1 — время быстродействия, то $x(t) \cap M_1 = \emptyset$ для t из полуинтервала $[t_0, t_1)$. Но $x(t_1) \cap M_1 \neq \emptyset$, то есть точка x(t) попадает в множество M_1 только при достижении времени t_1 .

Получим некоторые свойства множества достижимости.

1. Заметим, что множество достижимости является многозначным отображением, зависящим от параметра t. Его формулу можно переписать в виде:

$$X(t) = e^{(t-t_0)A} M_0 + \int_{t_0}^T e^{(t-s)A} U \, ds$$
 (24)

- 2. При каждом t множество X(t) компакт. Это вытекает из представления (24) и теоремы Ляпунова.
- 3. Если M_0 выпуклый компакт, то X(t) также выпуклый компакт. Это также следует из теоремы Ляпунова.

Следствие. В частном случае, при $M_0 = \{x_0\}$, множество X(t) — выпуклое.

4. X(t) непрерывно зависит от $\tau = t - t_0$ (длины интервала). Согласно теореме о внесении знака опорной функции под знак интеграла имеем:

$$c\left(\int_{t_0}^{t} e^{(t-s)A} U \, ds, \psi\right) = \int_{t_0}^{t} c\left(e^{(t-s)A} U, \psi\right) ds \stackrel{\text{CB-BO}}{=} {}^{4} \int_{t_0}^{t} c\left(U, e^{(t-s)A^*} \psi\right) ds$$

сделаем замену: $t-s=\alpha$, тогда $\mathrm{d}\alpha=-\,\mathrm{d}s$ и

$$\begin{split} \int_{t-t_0}^0 \mathbf{c}\,(U,e^{\alpha A^*}\psi)(-\,\mathrm{d}\alpha) &= \int_0^{t-t_0} \mathbf{c}\,(U,e^{\alpha A^*}\psi)\,\mathrm{d}\alpha \\ \int_{t_0}^t e^{(t-s)A}U\,\mathrm{d}s &= \int_0^{t-t_0} e^{\alpha A}U\,\mathrm{d}\alpha \stackrel{t-t_0=\tau}{=} X(\tau)e^{\tau A}M_0 + \int_0^\tau e^{\alpha A}U\,\mathrm{d}\alpha \\ &- \text{ непрерывно по }\tau. \end{split}$$

5. Так как $\tau = t - t_0$, то из свойства 4 следует, что X(t) непрерывно также по t.

Определение 22. Множество, определяемое по правилу

$$Y(t) = \left\{ x \in \mathbf{E}^n : x = e^{(t-t_1)A} x_1 + \int_{t_1}^t e^{(t-s)A} u(s) \, \mathrm{d}s, \ x_1 \in M_1, u(\cdot) \in D_U \right\} =$$

$$= \bigcup_{\substack{x \in M_1 \\ u(\cdot) \in D_U}} \left\{ e^{(t-t_1)A} x_1 + \int_{t}^{t_1} e^{(t-s)A} (-u(s)) \, \mathrm{d}s \right\},$$

называется множеством управляемости.

Множество управляемости состоит из точек, стартуя из которых в момент времени t, в момент времени t_1 мы окажемся в M_1 . Это решения задачи Коши, для которой краевое условие задано на правом конце отрезка.

В дальнейшем будем считать, что $Y(t_1) = M_1$, а также что существует такое $\varepsilon > 0$, что $Y(t) \cap M_0 = \emptyset$, при $t \in [t_1 - \varepsilon, t_1]$. Свойства множества управляемости аналогичны свойствам множества достижимости:

1. Для множества управляемости справедливо представление:

$$Y(t) = e^{(t-t_1)A} M_1 + \int_t^{t_1} e^{(t-s)A} (-U) \, ds$$

- 2. При любом t множество Y(t) компакт.
- 3. Из того, что M_1 выпуклый компакт следует, что Y(t) выпуклый компакт.
- 4. Многозначное отображение

$$Y(\tau) = e^{-\tau A} M_1 + \int_0^{\tau} e^{-\alpha A} (-U) \, \mathrm{d}\alpha, \;\; \mathrm{где} \; \tau = t_1 - t$$

непрерывно по τ .

5. Y(t) непрерывно зависит от t.

Доказываются эти свойства точно также, как и свойства множества достижимости.

Пример 27. Пусть задача выглядит следующим образом:

$$\begin{cases} \dot{x} = u, & x, u \in \mathbf{E}^2, \\ U = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\}, \\ M_0 = M_1 = \{0\}; \end{cases}$$

то есть матрица A — нулевая. Тогда множества достижимости и управляемости будут иметь вид:

$$X(t) = \{0\} + \int_0^1 U \, ds = t \operatorname{conv} U,$$

$$Y(t) = \{0\} + \int_0^1 (-U) \, ds = t \operatorname{conv} (-U).$$

+Рисунок

Или, иначе:

$$X(t) = \{x: x_1 = t, |x_2| \le t\},\$$

 $Y(t) = \{x: x_1 = -t, |x_2| \le t\}.$

Пример 28. Модель математического маятника. Его уравнение имеет вид:

$$\ddot{x} + x = V, \quad |V| \leqslant 1.$$

Сделав замену $x_1 = x, x_2 = \dot{x}$ получаем систему:

$$\left\{\begin{array}{ll} \dot{x}=x_2,\\ \dot{x_2}=-x_1+V \end{array}\right. \text{ с матрицей } A=\begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix};$$

или, что то же самое:

$$\begin{cases} \dot{x} = x_2 + u_1, \\ \dot{x_2} = -x_1 + u_2, \end{cases}$$
 где $U = \{ u \in \mathbf{E}^n : u_1 = 0, |u_2| \leqslant 1 \}.$

Теперь функции $U = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$, принимающие значения из U можно рассматривать, как управления в основной задаче. Заметим сразу, что с $(U, \psi) = |\psi_2|$.

В примере 24 было показано, что для данной матрицы экспоненциал e^{tA} имеет вид:

$$e^{tA} = e^{t\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & -\cos t \end{pmatrix}$$

Согласно свойству 4, множество достижимости представимо в виде:

$$X(\tau) = e^{\tau A} M_0 \int_0^{\tau} e^{sA} U \, \mathrm{d}s.$$

Посчитаем для него опорную функцию:

$$c(X(\tau), \psi) \stackrel{\text{reop. 5}}{=} \int_0^{\tau} c(e^{sA}U, \psi) ds = \int_0^{\tau} c(U, e^{sA^*}\psi) ds$$
 (25)

Пусть $\psi = (\psi_1, \psi_2) \in S$. Тогда его компоненты представимы в виде:

$$\psi_1 = \cos \alpha, \psi_2 = \sin \alpha, \text{ где } 0 \leqslant \alpha < 2\pi;$$
 (26)

тогда равенство (25) можно продолжить следующим образом (далее рассматривается только $\tau \in [0,\pi]$):

$$\int_0^\tau |\psi_1 \sin s + \psi_2 \cos s| \, \mathrm{d}s = \int_0^\tau |\sin(\alpha + s)| \, \mathrm{d}s = \alpha + s = \theta \int_\alpha^{\alpha + \tau} |\sin \theta| \, \mathrm{d}\theta;$$

посчитав интеграл получим:

$$c\left(X(\tau),\psi\right) = \begin{cases} (1-\cos\tau)\cos\alpha + \sin\tau\sin\alpha, & 0 \leqslant \alpha \leqslant \pi - \tau; \\ 2 + (1+\cos\tau)\cos\alpha - \sin\tau\sin\alpha, & \pi - \tau \leqslant \alpha \leqslant \pi; \\ (\cos\tau - 1)\cos\alpha - \sin\tau\sin\alpha, & \pi \leqslant \alpha \leqslant 2\pi - \tau; \\ 2 - (1+\cos\tau)\cos\alpha + \sin\tau\sin\alpha, & 2\pi - \tau \leqslant \alpha \leqslant 2\pi. \end{cases}$$

Возвращаясь к обозначениям (26), получаем:

$$c\left(X(\tau),\psi\right) = \begin{cases} (1-\cos\tau)\psi_1 + \sin\tau \cdot \psi_2, & 0 \leqslant \alpha \leqslant \pi - \tau; \\ 2\|\psi\| + (1+\cos\tau)\psi_1 - \sin\tau \cdot \psi_2, & \pi - \tau \leqslant \alpha \leqslant \pi; \\ (\cos\tau - 1)\psi_1 - \sin\tau \cdot \psi_2, & \pi \leqslant \alpha \leqslant 2\pi - \tau; \\ 2\|\psi\| - (1+\cos\tau)\psi_1 + \sin\tau \cdot \psi_2, & 2\pi - \tau \leqslant \alpha \leqslant 2\pi. \end{cases}$$

. . .

Определение 23. Если дана система

$$\dot{x} = Ax + u, (27)$$

то система с сопряженной матрицей

$$\dot{\psi} = A^* \psi$$

называется сопряженной системой к системе (27).

Лемма 8.

$$c(X(t), \psi(t)) = c(M_0, \psi(t_0)) + \int_{t_0}^t c(U, \psi(s)) ds$$

$$c(X(t), -\psi(t)) = c(M_0, -\psi(t_0)) + \int_t^{t_1} c(U, \psi(s)) ds$$

$$\langle x(t), \psi(t) \rangle = \langle x(t_0), \psi(t_0) \rangle + \int_{t_0}^t \langle u(s), \psi(s) \rangle ds$$

$$\langle x(t), -\psi(t) \rangle = \langle x(t_0), -\psi(t_0) \rangle + \int_t^{t_1} \langle u(s), \psi(s) \rangle ds$$

$$(x, t) \wedge t = \int_t^t \langle u(s), \psi(s) \rangle ds$$

$$c(X(t), \psi) = c(e^{(t-t_0)A}M_0, \psi) + \int_{t_0}^t c(e^{(t-s)A}U, \psi) ds =$$

$$= c(M_0, e^{(t-t_0)A^*}\psi) + \int_{t_0}^t c(U, e^{(t-s)A^*}\psi) ds$$

$$X(t) = e^{(t-t_0)A} \left(x(t_0) + \int_{t_0}^t e^{-(s-t_0)A}u(s) ds\right)$$

Определение 24. Объект называется управляемым на $[t_0, t_1]$ из M_0 в M_1 , если существуют такое $u(\cdot) \in D_U$ и такое $x(t_0) \in M_0$, что под действием этого управления $x(t_1) \in M_1$ или, что то же самое, $X(t_0) \cap M_1 \neq \emptyset$.

$$c(M_0, \psi(t_0)) + \int_{t_0}^{t_1} c(U, \psi(s)) ds + c(M_1, \psi(t_1)) \ge 0$$
 (28)

В случае выпуклых $X(t_0)$ и M_0 это определение, согласно свойству 11, можно переписать в виде еще одной эквивалентной формулировки:

$$c(X(t_0), \psi) + c(M_1, -\psi) \ge 0$$

для любого ненулевого ψ из \mathbf{E}^n .

- **Теорема 8 (Критерий управляемости).** 1. Если $M_0, M_1 \kappa$ омпакты, то выражение (28) необходимое условие управляемости на $[t_0, t_1]$ из M_0 в M_1 .
 - 2. Если M_0, M_1 выпуклые компакты, то выражение (28) необходимое и достаточное условие управляемости на $[t_0, t_1]$ из M_0 в M_1 .